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The notion of a spin structure for a gravitational field is defined, and it is shown that a spin structure 
exists if and only if the second Stiefel-Whitney class of the space-time M vanishes. The number of differ­
ent spin structures is then equal to the number of elements in HI(M, Z2)' 

I. INTRODUCTION 

Spinors have been used in general relativity for 
quite a while, proving to be of considerable advantage 
in facilitating and shortening calculations. They have 
been introduced by "affixing a spin dyad to every 
point of a sufficiently small set in space-time in a 
differentiable manner. "1-S To my knowledge, no 
attempts have been made to find a proper notion of 
"spin structure" for a gravitational field and to study 
under what conditions it exists. There are, on the 
other hand, satisfactory results for the analogous 
questions in the case of a Riemannian manifold with 
positive-definite metric, e.g., Milnor.4 

We shall define the notion of spin structures for a 
gravitational field in a suggestive manner, and express 
their number in terms of topological invariants of the 
space-time manifold M. 

The result is literally the same as Milnor's in the 
positive-definite case and can be derived from it, 
using the fact that the group SO(3, R) is a strong 
deformation retract of the proper orthochronous 
Lorentz group Lt. We shall, however, give a proof 
along Milnor's lines, with the appropriate alterations 
and filling in arguments only hinted at in Milnor's 
paper. We hope to achieve in this way that a physicist 
acquainted with the textbooks, e.g., of Spanier on 
algebraic topology5 and of Husemoller on fiber 
bundles6 gets a fair idea of the proof. 

II. THE SITUATION 

Let (M, Q) be a gravitational filed; i.e., M is a 
four-dimensional real paracompact Hausdorff mani­
fold, connected and of class Cr , (r ~ 2), and Q is a 
nondegenerate metric on M of signature (+ - - -) 
and of class Cr - 1• 

* On leave of absence from the University of Heidelberg, Ger­
many. 

1 P. Jordan, J. Ehlers, and G. R. Sachs, Akad. Wiss. Lit (Maim:) 
Abhandl. Math Nat. KI. 1 (1961). 

2 R. Penrose, Ann. Phys. 10, 171 (1960). 
3 K. Bichteler, Z. Pliysik 178, 488 (1964). 
• J. Milnor, L'Enseignement Math. 9, 198 (1963). 
5 E. Spanier, Algebraic Topology (McGraw-Hill Book Co., New 

York, 1966). 
• K. Husemoller, Fibre Bundles (McGraw-Hill Book Co., New 

York, 1966). 

We assume, furthermore, that (M, Q) is oriented 
and time-oriented; i.e., there exists a four-form E and 
a timelike tangent field Xo [Q(Xo, Xo) > OJ, both 
defined all over M, continuous and nowhere zero. 
There is no natural notion of a spin structure for 
fields (M, Q) which do not satisfy both of these 
conditions. We call a field (M, Q) with these properties 
an orientable field. 

Two pairs (E, Xo) and (E/, X~), as above, are equiva­
lent if E' = fE, where f is an everywhere-positive 
function, and if Q(Xo, X~) > O. An orientation of an 
orientable field (M, Q) is the choice of an equivalence 
class {E, XO}, which is called an orientation. A pair 
[(M, Q), {E, Xo}] is an oriented field. (M, Q) has four 
distinct orientations. 

We choose now a fixed orientation {E, Xo} for 
(M, Q) and define a tangent Y to be positive, if it is 
timelike and Q(Xo, Y) > 0 and a quadruple (Yo, Y1 , 

Y2 , Ys) of tangents to be positively oriented, if Yo is 
positive and E( Yo, ... , Ya) > O. The set ZO of all 
positively oriented orthonormal tetrads has then a 
natural structure as a differentiable principal fiber 
bundle over M with structure group Ll, the identity 
component of the Lorentz group, and projection po. 
There is a soldering form ()a, a tensorial one-form 
on Z with values in R4 and of type id (cf., e.g., 
Ref. 3.) 

We thus have associated with the oriented field a 
differentiable principal fiber bundle $0 = (ZO, pO, M, 
Ll). $0 together with ()a in turn fixes the metric and 
orientation structures on M. We may, thus, talk 
about the oriented field $0. The choice of another 
orientation gives another principal bundle over M, 
different as a principal bundle, but equal as a fibration 
over M. We shall see that only the topology of the 
fibration pO:Zo ---+ M enters the considerations. 

III. DEFINITION OF SPIN STRUCTURE FOR 
(M, Q) 

Let ~ be the universal covering group of Ll and 
a: ~ ---+ Lt a covering homomorphism. It is known 
that a is a twofold covering and that every twofold 
covering with connected covering space is equivalent 
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to &. ~ is isomorphic to 8L(2, C), the group of 
complex 2 X 2 matrices with determinant 1. 

Definition. (See Ref. 4). A spin structure for the 
oriented field ;0 is a differentiable principal fiber 
bundle ;8 = (Z8,p', M,~) over M with group ~ and 
projection p', together with a differentiable map 
8:Z' -- ZO such that the following diagram is com­
mutative: 

Z· x ~ SXa ~ ZO xLi 
+ 

! -<- right multiplication -- ! 
Z· ________ s ________ ~> zo 

~/ 
M 

Remarks. Fix a point s E Z· and its image Z = 
8(s) E Zoo Because of the commutativity of the lower 
triangle, sand z lie over the same point m E M. The 
fiber Z:,. of ;' OVer m is s . ~ and the fiber Z!!, of ;0 
over m is z . Lt. The commutativity of the upper square 
implies that the restriction of S to Z!. is equivalent to 
the covering &: ~ -- Lt, hence 8 is a double covering 
Z· -- ZO which upon restriction to a fiber Z!. induces 
the nontrivial covering of the fiber Z!. . 

The following proposition reduces the question of 
the existence of a spin structure to the question of 
the existence of such a twofold covering. 

Proposition. Let Z· be a topological space and 
8:Z· __ Zo a twofold covering of ZO which upon 
restriction to 8-1(Z!:.) is the unique nontrivial (con­
nected) covering of Z!!,. Then there exists a unique 
structure ;' = (Z·,p', M,~) of differentiable princi­
pal fiber bundle for Z· such that 8:Z· -- ZO is a 
spin structure for ~o. 

Proof The differentiable structure on Z' is uniquely 
given by requiring 8 to be a local diffeomorphism; 
p': = po 0 8 is differentiable. In order to define the 
right action of ~ on Z8, we proceed as follows: choose 
an open set We M, a cross section A: W __ Zo, 
and a cross section A: W -- Z8 such that 8 0 A = A. 
Abbreviate (P8)-1(W) = :Zw, (P0)-l(W) = Z¥V. Ac­
cording to the assumptions, there is a commutative 
differentiable diagram: 

Zw JAX",; ~ X w 

ts taxid 

Zo J;.x",o Lt X W 
w--+ + 

with J;.(z· L) = J;.(z) . L for L E L.l.. J;. is some 
differentiable function Z~ -- ~ with JA 0 A(m) = 
e E~. Define s . U for s E Zw' U E ~ by p'(s . U) = 
pS(s) and h(s' U) = JA(s)' U. One can immediately 
check that (8, U) -- 8U is a differentiable right action 
[8(UV) = (8U)' V] which acts transitively and 
effectively on the fibers Z:,., mEW. Furthermore, the 
first five-cornered diagram is commutative, when 
restricted to W. 

It remains to be shown that the action so defined 
does not depend on the choice of W, A, and A. Thus, let 
W', A', A.' be another triple and denote by (8, U)--
8! U the corresponding action. Let mEW () W' and 
SEZ!... WriteA'(m) = A(m)V(m)andv(m) = &(V(m». 
Then A'(m) = A(m)v(m). With u = &(U), we have 
8(A'(m)! U) = A.'(m)u = A(m)v(m)· u = 8(A(m)V(m) 
U) = 8(A'(m)U). Thus A'(m)! U = A'(m)U for small 
U, hence for all U E~. Finally, ;8 is locally trivial 
with the cross sections A as above. 

The uniqueness of ;8 is implicit in the above 
considerations. 

IV. THE EXISTENCE OF SPIN STRUCTURES 
FOR (M, Q) 

The proposition permits us to replace the definition 
of a spin structure for ;0 by the following one: 

A spin structure for ;0 is a cohomology class c of 
Hl(ZO, Z2) with coefficients the ring Z2 of integers 
modulo 2 such that i!(c) is the nonzero element of 
Hl(Z!!" Z2) for all injections im :Z!!, -- ZO (see Ref. 4). 
[Hl(ZO, Z2) counts the twofold coverings Z8 __ zo, 
and the condition i*(c) :;f= 0 is the requirement that the 
induced covering Z!.. -- Z!!, be the nontrivial one.] 

We are now ready to state the theorem on the 
existence and number of global spin structures: 

Theorem. Let ;0 be an oriented gravitational field. 
There exists a spin 'structure for ;0 if and only if the 
second Stiefel-Whitney class w2 E H2(M, Z2) of the 
manifold M vanishes. If l1l2 = 0, the number of 
different spin structures is given by the number of 
elements in Hl(M, Z2)' 

Corollary. If M is simply connected and 7T2(M) = 0 
(two-spheres can be contracted) then there is a unique 
spin structure. This follows from Hurewicz's theorem 
and universal coefficient theorems. 

It is not too difficult to prove the corollary directly 
by constructing a structure of principal bundle on the 
twofold covering Z8 of Zoo 

Remarks. If one removes n parallel two-planes 
from R4 and takes the Minkowski metric, one is left 
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with a connected flat manifold M with H2(M, Z2) = ° 
and 2n elements in Hl(M, Z2)' So there exist 2n different 
spin structures. 

If we choose another oriented field ;0' for the 
orientable field (M, Q), it has the same number of 
spin structures as ;0, according to the theorem. The 
proof below shows that there is, in fact, a one-to-one 
correspondence between the spin structures for ;0 
and ;0'. 

We need the following: 

Lemma: SO(3, R) is a deformation retract of Lt. 

Proof: As is well known [ a local isomorphism 
SL(2, C) - Lt is given, e.g., in Ref. 3, and SL(2, C) is 
simply connected; see Ref. 6, p. 93 ],SL(2, C) is 
isomorphic to ~, so let a: ~ = SL(2, C) - Lt be a 
covering homorphism. The subgroup SU(2, C) of ~ 
of unitary matrices is mapped onto SO(3, R) C Lt 
under a. If we show that SU(2, C) is a deformation 
retract of SL(2, C), the lemma is proved. 

To show this, we use the well-known fact that every 
element A E SL(2, C) can be written as a product 
A = U' ~ of a unitary and a triangular matrix 
~ = (~ ~). This representation can be made unique by 
requiring ~ to have positive entities in the diagonal 
and determinant 1. Thus, SL(2, C) is topologically 
the product of SU(2, C) and the set T of triangular 
matrices with determinant one and positive diagonal 
elements. Tis obviously contractible, and the lemma is 
proven. [A = U' ~ is the Iwasawa decomposition 
(see Ref. 7) with respect to the maximal compact 
subgroup SU(2, C), and the proof consists in the 
remark that the solvable factor in it is always con­
tracti b le.] 

Proof of the theorem. (a) The fibration po:zo - M 
is orientable over any coefficient ring. In fact, the 
action of the fundamental group on each fiber is 
homotopically trivial: let w be a closed loop starting 
and ending in m E M. One element in the homotopy 
class h[w]:Z!!, _Z!!, belonging to the homotopy 
class of w is the right translation of Zo by the element 
of the holonomy group corresponding to w (see 
Refs. 8 and 9). As Lt is connected, this right transla­
tion is homotopi~ to the identity h [w] = id. 

(b) We derive another fibration pr:zr _ M from po 
in the following manner: choose a positive tangent 
field Xo and consider the set zr of all tetrads z in zo 
which have Xo as its first tangent [this is equivalent to 

7 S. Helgason, Differential Geometry and Symmetric Spaces, 
(Academic Press Inc., New York, 1962). 

8 A. Lichnerowicz, Theorie globale des connexions et des groupes 
d'holonomie (Edizioni Cremonese, Roma, 1955). 

• W. Beiglboeck, Z. Physik 179, 148 (1964). 

requiring that ;a(z) = (1, 0, 0, 0) for the vector field 
ga corresponding to Xo by the soldering form ()a; 
see Ref. 3]. There is a principal fiber bundle gr = 
[zr,pr, M, SO(3, R)] with zr as bundle space, which 
is a restriction of ;0. ;r is orientable over Z2. 

(c) Consider the universal SO(3, R) bundle 1'3 = 
(7T: f3 _ G3), where G3 is the Grassmann manifold of 
three-spaces s C ROO and f! is the set of orthogonal 
three-frames of s. 7T is orientable over Z2' There is a 
classifying map F: M _ G3 such that F*(y3) = ;r. 

(d) Consider the diagram (coefficients are Z2) : 

O. .• TO 

0- Hl(M) ~ Hl(ZO) ~ H 1(Lt) ---~ H2(M) 

t~ t(2) t(1) t~ 
0_ Hl(M) ~ Hl(zr) --+ Hl(SO(3, R» ~ H2(M) 

IF. IF. ~ I IF. 
0-+ Ml(G3) ~ H 1(f3) --+ Hl(SO(3, R» ~ H2(G3) 

Each row is an exact sequence, which can be extracted 
from the spectral sequence of the corresponding 
fibration. As the spectral sequence and "extracting" 
are functorial, one obtains the vertical arrows (from 
the restriction ;r -+ ;0 and the classifying map F). 
In the third row of groups, the fibers are substituted 
by their homeomorphs, the groups. Now (1) is an 
isomorphism, by the lemma. Then so is (2), by the five 
lemma. As 1'3 is universal, Hl(f3) = 0 and -rep is a 
monomorphism. 

H2(G3) consists of the elements 0 and W 2 = W2(y3), 
and the second Stiefel-Whitney class W2(;r) is defined 
to be F*(W2) E H2(M). We see that -rr{Hl[SO(3, R)]} 
= [0, W2(;r)] E H2(M). Now the tangent bundle T to 
M is the Whitney sum of the vector bundle associated 
to ;r and the trivial bundle RXo(m) _ m. Hence, the 
second Stiefel-Whitney class w2(M) of T equals 
w2(n, by the Whitney formula. Hence TO[Hl(Lt)] = 
[0, w2(M)] C H2(M). 

An element C E Hl(ZO) is mapped into the nonzero 
element a of Hl(Lt) by the injection i: Fibre _ ZO, 
if and only if TO(a) = 0, i.e., if and only if w2(M) = 0. 
~ccording to Sec. III above, there exists a spin 

structure if and only if w2(M) = O. 
If c, c' are spin structures, they differ by an element 

of pO*(Hl(M», and as pO* is mono, this proves that 
Hl(M) corresponds to the different spin structures. 
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A systematic formulati~n of the concept of inhomogenization is given both for Lie groups and for Lie 
algebras, and the connection between the two structures is clarified in terms of the notion of semidirect 
product. Special emphas.is is devoted to the classification of the inhomogenizations of semisimple Lie 
algebras. As an apphcatlOn, a lemma due to O'Raifeartaigh is generalized to a wide class of inhomo­
geneous structures. 

1. INTRODUCTION 

Recently, some interest has been devoted to the 
study of the structure and of certain classes of rep­
resentations of inhomogenizations of Lie groups and 
Lie algebras. 1 The importance of this study is moti­
vated by the role that inhomogenizations seem to 
play in connection with the problem of understanding 
the symmetries displayed by quantum-mechanical 
systems, with special reference to the field of ele­
mentary-particle physics.2 In this respect, it will be 
enough to mention as representative the almost 
classical examples of the inhomogeneous ISL (6, C) 
and ISU (6,6), which have been proposed as relativistic 
generalizations of SU (6).2(aJ-2(g) 

Furthermore, inhomogenizations appear naturally 
as contractions of "homogeneous" Lie algebras. In 
fact, the process of contraction defined by Wigner 
and InonU3 leads from the initial algebra to an 
inhomogenization of the subalgebra with respect to 
which the contraction is made. As an example, the 
inhomogeneous pseudo-orthogonal and pseudounitary 
groups 10 (p, q) and U(l) ® IU(p, q), respectively, 

• Supported in part by the Ministero della Pubblica Istruzione. 
1 (a) H. Bacry and A. Kihlberg, Commun. Math. Phys. I, 150 

(1965); (b) H. Bacry, Ann. Henri Poincare 11, 327 (1965); (c) E. 
Angelopoulos, Compt. Rend. 263, A400 (1966); (d) Y. Ne'eman, 
Commun. Math. Phys. 3,181 (1966); (e) R. Mirman, J. Math. Phys. 
8,57, (1967); (f) A. Kihlberg, "On the Unitary Irreducible Represen­
tations of the Strong Coupling Group [SU(2) ® SU(2)] X T. ," 
CERN preprint, 67/419/5·TH 760, March 1967; (g) C. George and 
M. Levy-Nahas, J. Math. Phys. 7, 980 (1966); (h) J. Rosen, Nuovo 
Cimento 45A, 234 (1966); (i) J. Rosen, Nuovo Cimento 468, I 
(1966); (j) P. Roman and J. Rosen, J. Math. Phys. 7, ~072 (1966); 
(k) T. Cook and B. Sakita, J. Math. Phys. 8, 708 (1967). 

2 (a) B. Sakita, Phys. Rev. 1368, 1756 (1964); (b) T. Fulton and J. 
Wess, Phys. Letters 14, 57 (1965); (c) w. Ruhl, Nuovo Cimento 37, 
301 (1965); (d) J. S. Bell and H. Ruegg, Nuovo Cimento 39, 1166 
(1965); (e) W. Ruhl, Nuovo Cimento 38, 675 (1965); (f) S. Coleman, 
Phys. Rev. 138, BI262 (1965); (g) w. Ruhl, Nuovo Cimento 37, 
1629 (1965); (h) L. O'Raifeartaigh, Phys. Rev. 139,81052 (1965); 
(i) M. Flato and D. Sternheimer, J. Math. Phys. 7, 1932 (1966); 
(j) M. Flato, P. Hillion, and D. Sternheimer, Compt. Rend. 264, 
A82 (1967); (k) A. 8ohm, N. Mukunda, and E. C. G. Sudarshan, 
Phys. Letters 24B, 301 (1967). 

3 E. Inonii and E. P. Wigner, Proc. Natl. Acad. Sci. U.S. 39, 
510 (1953). 

arise as suitable contractions of corresponding 
homogeneous groups O(p,q + 1) [or O(p + l,q)] 
and, respectively, U(p,q + 1) [or U(p + l,q)].l(i) 

The aim of the present paper is to give a systematic 
formulation of the concept of inhomogenization both 
for real Lie groups and real Lie algebras and to clarify 
the structural connection thereof. The fundamental 
concept which is set as a basis of our definition is the 
abstract notion of semi direct product. In Sec. 2 
we recall the definition of semidirect product both for 
abstract groups and Lie algebras. In Sec. 3 we apply 
some standard results of the theory of Lie groups to 
prove the theorem that the Lie algebra of the semi­
direct product of two Lie groups G and G correspond­
ing to a given homomorphism G of G into Aut G4 is 
the semi direct product of the Lie algebras A( G) and 
A(G) of the two factors, corresponding to the homo­
morphism 1:1, induced by G, of A(G) into Der A(G).5 
In Sec. 4 we introduce the definition of inhomogeniza­
tion of a real Lie group G as the semidirect product 
Rn a X G of G by the Abelian real Lie group Rn 
relative to a representation G of G acting in the vector 
space Rn. The exactly parallel definition is given for 
Lie algebras. In connection with the results of Sec. 3, 
it is shown that an inhomogenization of a Lie algebra 
A is the Lie algebra of a definite inhomogenization 
of the simply connected Lie group of which A is the 
Lie algebra. In Sec. 5 we look at the problem of the 
classification of all inhomogenizations of a given 
semisimple Lie algebra. Some recent statements of 
Rosen concerning this matterl(h) are subjected to 
critical analysis and generalized through the intro­
duction of the notion of quasi equivalent representa­
tions. As an application of our results, we consider 
in Sec. 6 the problem of the generalization of a lemma 

• By Aut G we denote the group of automorphisms of G. 
• By Der A(G) we denote the Lie algebra of derivations of A(G) 

(see Ref. 6, p. 8). 
• N. Jacobson, Lie Algebras (Interscience Publishers, Inc., New 

York,1962). 
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due to O'Raifeartaigh, on which the proof of the 
well-known mass-splitting theorem is founded. 7 ,8 

We show that the validity of this lemma is not bound 
to specific properties of the Poincare algebra, but 
extends to a wide class of inhomogeneous algebras. 
This generalization is interesting because it provides 
a good example of the utilization of some common 
properties of inhomogenizations to derive a result 
previously established for a particular inhomogeneous 
structure, namely the Poincare algebra. 

2. SEMIDIRECT PRODUCT OF LIE GROUPS 
AND OF LIE ALGEBRAS 

We shall recall the notion of semidirect product 
of two groups.9 

Consider two groups G and G. Let (J:x ->- (Jil be a 
homomorphism of G into the group Aut G of auto­
morphisms of G. Consider the Cartesian product 
G x G of G by G, equipped with the following 
internal composition law: 

(x, x)(y, ji) = (X(Jil(Y)' xji). (1) 

With respect to this law the set G x G becomes a 
group which we shall denote by G a X G and which is 
referred to as the semidirect product of G by G 
corresponding to the homomorphism (J. If both G 
and G are Lie groupslO we further require that (J be an 
analytic homomorphism of G into Aut G.ll In this 
way, G a X G is a Lie group. For the sake of clarity, 
the preceding definition of semidirect product will be 
called "external." 

Parallel to this definition, one intr06uces another 
definition of semidirect product, that will be called 
"internal" and which is formulated as follows. A 
group M is said to be the semi direct product of two 
subgroups Hand ii if: 

(1) M is generated by H u ii. 
(2) H n ii = 1. 
(3) One of the two subgroups, H say, is normal in 

M. 

7 L. O'Raifeartaigh, Phys. Rev. Letters 14, 575 (1965). 
8 (a) R. Jost, Helv. Phys. Acta 39, 369 (1966); (b) I. Segal, J. 

Functional Anal. 1, 1 (1967). Since completing the present manu­
script, we have learned that a result similar to the one we derive 
in this section has been obtained by Segal in the reference cited. 

• L. C. Biedenharn, "Group Theoretical Approaches to Nuclear 
Spectroscopy" in Lectures in Theoretical Physics 1962 (Interscience 
Publishers Inc. New York, 1962), Vol. V. 

10 Throughout in the following we shall be concerned with real 
Lie groups, i.e., with Lie groups of which the underlying analytic 
manifold is real. Similarly, all Lie algebras will be over the field R 
of real numbers. 

11 In the following we shall be concerned only with the case when 
G is connected (actually, simply connected). Then Aut G is a Lie 
group (see Ref. 12, p. 138) and we can speak of an analytic homo­
morphism of G into Aut G. 

12 C. Chevalley, Theory of Lie groups (Princeton University Press, 
Princeton, N.J., 1946). 

From (1), (2), and (3) there follows that any 
element a E M can be written in a unique way in the 
form a = xx with x E H, x E ii. Consequently, the 
product of any two elements of M, a = xx, b = yji, 
reads ab = xxyji = (xxyx-I)(xji), xxyx-I E H, xji E ii. 
Define (Jil:Y -+ (Jil(Y) = xyx-I. Since H is normal in 
M, (Jil is an element of Aut H. The mapping (J:X ->- (Jil 
is a homomorphism of ii into Aut H. It follows that 
the mapping xx ->- (x, x) is an isomorphism of M 
onto H a X ii (M ~ Ha X ii). Conversely, observe 
that, starting from the "external" definition of semi­
direct product and setting G' = {(x, 1) I x E G} and 
G' = {(I, x) I x E G}, G' and G' are both subgroups 
of G a X G for which (1), (2), and (3) hold, G' being 
normal in G aX G. Further, one has «(Jil(Y)' 1) = 
(1, x)(y, 1)(1, X)-I. This proves the equivalence of the 
two definitions. 

As to Lie algebras, one usually says that a Lie 
algebra B is the semidirect product of two sub algebras 
A and A if: 

(1) the vector space underlying B is the direct sum 
of the vector spaces underlying A and A, and 

(2) one of the two subalgebras, A say, is an ideal. 
Then, any element S E B can be uniquely decomposed 
in a sum s = x + x with x E A, x E A. Consequently, 
the commutator of any two elements s = x + x 
and t = Y + ji reads 

[s, t] = [x + x, y + ji] 
= ([x,y] + [x,y] - [ji,x]) + [x,ji] 

= ([x,y] + adx(y) - adji(x» + [x,ji]. (2) 

Since A is an ideal, the mapping x ->- ad x is a 
homomorphism of A into the Lie algebra Der A of 
derivations of A. This suggests introducing also for Lie 
algebras an "external" definition of semidirect product 
as follows,l3 Let two Lie algebras A and A be given, 
and let D:x -+ Dii be a homomorphism of A into 
Der A. Consider the product vector space A X A of 
the two vector spaces underlying A and A, respectively, 
equipped with the following bilinear composition 
law: 

[(x, x), (y, ji)] 

= ([x, y] + Diy) - Dy(x), [x, ji]). (3) 

One can verify that, with respect to this law, the 
vector space A X A becomes a Lie algebra.14 This Lie 
algebra will be denoted by A D X A and referred to as 

13 N. Bourbaki, Algebres de Lie (Hermann & Cie., Paris, 1960). 
14 The proof of this statement relies essentially on the two 

following properties: (I) [Dil' Dy] = D[il,YJ' which is a consequence 
of D being a homorphism, and (2) Dz{[x, y]) = [D;.(x), y] + 
fx, Dz{y)] which follows from the definition of derivation. 
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the semidirect product of A by A, corresponding to 
the homomorphism D. 

Setting A' = {CO, i) liE A} and A' = {(x, 0) I 
x E A}, we readily see that: (1) the vector space 
underlying A D X A is the direct sum of the vector 
spaces underlying A' and A', respectively; (2) both 
A' and A' are subalgebras and A' is an ideal. 

Proof: 

V(x,i)EA D X A, 
(x, i) = (x, 0) + (0, i), (x, 0) E A', (0, i) E A', 

and the decomposition is obviously unique. This 
proves (1). 

[(0, i), (0, y)] = (0, [i, YD. 

Thus A' is a subalgebra. 

[(x, 0), (y, y)] = ([x,y] - Dii(x), 0), 

i.e., A' is an ideal. 
Further, one has 

(Dx(Y) , 0) = [(0, x), (y, 0)] 

= ad (0, i){(y, O)}. 

This proves that the "external" definition of semi­
direct product of Lie algebras is equivalent to the 
usual one (which, analogous to the group case, we 
shall call "internal"). 

We conclude this section with a remark about the 
close link existing between semidirect products and 
extensions of Lie algebras. As is well known, if a 
Lie algebra Q is a homomorphic image of a Lie 
algebra E, one says that E is an extension of Q by S, 
S being the kernel of the homomorphism. If, as a 
vector space, E = S ® T and T is a subalgebra, one 
speaks of an inessential extension of Q by S. If this 
is the case, E is clearly the semidirect product of S 
by T in the internal sense. Hence, as Q""'" E/S""'" T, 
E is isomorphic to the semi direct product S !Zop X Q 
where {3 is an isomorphism of Q onto T, and IX is the 
homomorphism x --+ ads x of T into Der S. Con­
versely, any semidirect product S D X Q is an in­
essential extension of Q by S. 

3. LIE ALGEBRA OF THE SEMIDIRECT 
PRODUCT OF TWO LIE GROUPS 

In this section we examine the structure of the Lie 
algebra of the semidirect product of two Lie groups. 
For this purpose we need some standard results of the 
theory of Lie groups. 

(1) Let G be a simply connected Lie group. Then 
(see Ref. 12, pp. 137, 138) Aut G is a Lie group and 
there exists an (analytic) isomorphism IX: p --+ C1.p of 

Aut G onto the Lie group Aut A( G) of automorphisms 

of the Lie algebra A( G) of G such that 

p(exp X) = exp IXp(X). (4) 

(2) Let rp:x --+ rpx be an analytic homomorphism 
of a Lie group G into a Lie group G'. rp induces a 
homomorphism t::.."': g --+ t::..:t between the correspond­
ing Lie algebras such that (see Ref. 12, p. 118) 

rpexpg = exp t::..:t. (5) 

Suppose now an analytic homomorphism a:x --+ ax 
of G into Aut G be given. Then, ifoc is the isomorphism 
of Aut G onto Aut A(G) defined in (I), IX 0 a:i--+ 
(IX 0 a)x is an analytic homomorphism of G into Aut 
A(G). Noting that the Lie algebra of Aut A(G) is the 
derivation algebra Der A(G) of A(G) (see Ref. 6, p. 8), 
we can apply (2) to deduce the existence of a homo­
morphism 

t::..(~oa): g --+ t::..1oa) 

of A(G) into Der A(G) such that 

() 
A (!Zoa) 

C1. 0 a exp g = exp u g . 

From this basis we can deduce the following: 

(6) 

Theorem: Let G a X G be the semi direct product 
(in the external sense) of a simply connected Lie 
group G by a Lie group G, corresponding to an 
analytic homomorphism a:i --+ ax of G into Aut G. 
Then the Lie algebra of G a X G is the semidirect product 
(in the external sense) A(G),,(~oa) X A(G) of A(G) by 
A(G), corresponding to the homomorphism t::..(~oa) of 
A(G) into Der A(G). 

Proof: Note first that the vector space underlying 
the Lie algebra of G a X G can be identified with the 
direct product of the vector spaces underlying the Lie 
algebras A(G) and A(G) respectively, i.e., with the set 
{(X, X) I X E A(G), g E A(G)}, where sum and multi­
plication by a scalar are defined by 

(X, X) + (Y, Y) = (X + Y, X + Y) 
and 

k(X, g) = (kX, kg). 

As to the commutator, we shall determine it by 
means of the relation (see Ref. 15, Chap. VI) 

(x( e), i(e»(y( e), y( e»(x( e), i( e»-l(y(e), y(e»-l 

= exp {e2[(X, X), (Y, Y)] + O(E3)} 

= 1 + e2 [(X, g), (Y, Y)] + O(e3), (7) 

where e --+ x(e) = exp eX, etc., are one-parameter 

16 P. M. Cohn, Lie Groups (Cambridge University Press, 1957.) 
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subgroups of G, etc., and e is sufficiently small.16 

Making use of Eq. (1) we obtain the following 
expression for the commutator of two elements of 
Gux G: 
(x, x)(y, y)(x, X)-l(y, y)-l 

= (xO'x(y)O'XYX-1(x-1)O'XYX-1y-1 (y-l), xyx-IY-l). (8) 

We calculate each term up to the second order in the 
neighborhood of the identity 

(1) x(e)=I+eX+!e2 X2 + ... 

(2) O'X(<)(y(e» = O'exp.g(exp eY) 

[by Eq. (4)] 

[by (6)] 

= exp ecxuexp <1'( Y) 

= 1 + e(cxuexp <x(Y» 

+ te2(cxuexPLf(y»2 + ... 
= 1 + e[(cx oO')exp.g](Y) 

+ !e2{[(cx 0 0')exp<x](y)}2 + ... 

= 1 + e(exp e~<g°u)(Y» 

+ !e2(exp e~<gou)(y»2 + ... 

= 1 + e Y + e2~<gou)(y) + le2 y2 

+ .... 
In the same way, and using the relations (see Ref. 15, 
Chap. VI) 

exp eX exp e Yexp (-eX) 

= exp {e Y + e2[X, Y] + O(e3)} 
and 

exp EX exp e Yexp (-eX) exp (-e Y) 

= exp {e2[X, Y] + O(e3)}, 
we get 

(3) 0' i«)y(<)x-1(<)(X-1( e» 
= 1 - eX + l e2X2 _ e2~<p0U)(X) + ... 

and 

(4) O'X(<)y(<):i;-1(<)y-1(<)(y-l(e» = 1- eY + ie2y2 +. ". 

16 The expansions of the exponential mappings that we make use 
of must be understood in the following way. Given a finite number 
of one-parameter subgroups. -- x 1(E) = exp .X1, .•• , • -- Xk(') = 
exp .X., consider an analytic function[(x) defined in a neighborhood 
r of the identity element. Then (see Ref. 15, Chap. III) we can find an 
• sufficiently small to ensure that 

k 

II x;(.)E r 

and that the following expansion holds: 

[(exp EX, . exp .X • ..... exp EX.) 

Then: 

x( E)O' X(<)(y( e»O' x«)y(<)x- I (<) (x-\ e» 

X O'X(<)Y(E)X-1(dy-1(E)(y-\e» 

= 1 + e2([X, Y] + ~1°u)(y) - ~<p0u)(X» + O(i). 

Further, we have 

x(E)y(e)x-l(e)y-l(e) = 1 + e2[X, Y] + .... 
Hence 

(x(e), x(e»(y(e), y(e»(x(e), x(e)rl(y(e), .Y(e)rl 

= 1 + e2([X, Y] + ~1°u)(y) 

and comparing with (7) 

[(X, X), (Y, Y)] 

- ~<p0u\X), [X, YJ) + ... 

= ([X, Y] + ~1°u)(y) - ~(Y"')(X), [X, Y]). (9) 

Q.E.D. 

4. INHOMOGENIZATIONS OF LIE GROUPS 
AND LIE ALGEBRAS 

We shall be interested in the case when G is the 
additive group Rn (every Abelian, real, simply con­
nected, n-dimensional Lie group is isomorphic to Rn). 
Here, Aut Rn is simply GL (n, R),17 Then, given any 
semidirect product Rn u x G, 0' is a (not necessarily 
faithful) representation of G by linear transformations 
of the vector space Rn. 

The Lie algebra A(Rn) = jtn of Rn is the uniquely 
determined Abelian Lie algebra with underlying 
vector space Rn and we have 

A(Rn uX G) = jtn dUX A(G),18 (10) 

where ~u is a (not necessarily faithful) representation 
of A(G) by linear transformations of the vector space 
Rn. Actually, ~u is a homomorphism of A(G) into 
the Lie algebra of derivations of jt n, which identifies 
with gl (n, R), the Lie algebra of GL(n, R).19 

17 In fact, an automorphism [ of the additive Lie group R" is 
a homomorphism of Rn satisfying the condition [(x + y) = [(x) + 
[(y). For any integer n we then have [(nx) = n[(x). For any rational 
r = n/m set y = (n/m)x. Then my = nx, [(my) = [(nx), m[(y) = 
n[(x),f[(n/m)xl = (n/m)[(x). For any real oc there exists a sequence of 
rationals {oc.} such that oc = lim oc •. Since [is a homeomorphism, we 

n-.. oo 
have lim [(oc.x) = [(ocx). On the other hand lim oc"[(x) = oc[(x). 

n-oo n-oo 
Hence oc[(x) = [(ocx) so that[is a nonsingular linear transformation 
of the vector space R"; that is to say, it is an element of GL(n, R). 

18 The reason we have written /lu in place of /l("oU) is that 
Aut R" = Aut A(R") which enables us to take oc as the identity map­
ping of Aut R'. 

19 As is well known, g/ (n, R), the Lie algebra of GL(n, R), is the 
Lie algebra of all linear transformations of.1t". One can arrive at this 
conclusion also by observing that, as a consequence of .1t" being 
Abelian, every linear transformation of its underlying vector 
space is a derivation. 
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Conversely, let:Rn a X A be the semidirect product 
of a Lie algebra A by :ltn corresponding to an arbi­
trary representation A of A acting in the vector space 
Rn. Then, if 0 is the simply connected group of which 
A is the Lie algebra, a well-known theorem (see 
Ref. 12, Theorem 2, p. 113) ensures the existence of a 
representation (1 of G acting in Rn, such that A is the 
representation of A(O) = A induced by (1. This 
enables us to conclude that 

:R1 x A = A(R; x 0). 
The reason we have required 0 to be simply connected 
is that, if it were not so, it would be possible that, for a 
representation A of A, there would not be a representa­
tion (1 of the group 0, inducing A (as long as we 
confine ourselves to single-valued representations; 
see Ref. 12, p. 113). 

According to the terminology which is used in 
physics, we call any semidirect product of the kind 
Rn .. X 0 an inhomogenization of 0. Note that the 
invariant Abelian subgroup Rn can be identified with 
the group of translations in the n-dimensional vector 
space on which the representation (1 of 0 acts. 
Similarly, we call any semidirect product of the kind 
:Rn a X A an inhomogenizationHh) of the Lie algebra A. 

We note that the class of in homogenizations of a 
Lie algebra A identifies with the class of inessential 
extensions of A by an Abelian kernel. 

The results of this section show that every inhomog­
enization of an arbitrary Lie algebra A can be looked 
upon as the Lie algebra of an inhomogenization of a 
simply connected Lie group 0 of which A is the Lie 
algebra. In the following, since A is a representation 
of A, we shall always speak of inhomogenization of a 
Lie algebra relative to one of its representations. 20 

If the representation, relative to which the in­
homogenization is made, is faithful, it is easy to 
construct a faithful representation of the inhomogeni­
zation. Let P = :It n a X A be an inhomogenization of 
an r-dimensional Lie algebra A corresponding to a 
faithful n-dimensional representation A.22 We choose 

10 It is a consequence of our definition of inhomogenization of a 
real Lie algebra A that the representation ~,relative to which the 
inhomogenization is made, is a real representation, i.e., a representa­
tion of A by linear transformations of a real vector space. Never­
theless, it is possible to inhomogenize a real Lie algebra also with 
respect to its essentially complex representations, i.e., representations 
by linear transformations of complex vector spaces, having the prop­
erty that for one such representation there exists no b~sis with resp.ect 
to which its elements are represented by matnces WIth real entnes. 
As we show in another paper (Ref. 21), the inhomogenization of a 
real Lie algebra with respect to an essentially complex representation 
may be given a meaning as an inhomogenization with respect to a 
certain real representation of double dimension. . 

21 V. Berzi and V. Gorini, J. Math. Phys. 9, 829 (1968) followmg 
paper. . . . . 

•• The existence of at least one fimte-dlmenslOnal faIthful rep-
resentation of A is ensured by Ado's theorem. 

in P a basis {TIL' M i } where the Til's (j.t = 1,2 •... ,n) 
span :ltn and the M/s (i = I. 2 •...• r) span A. 
Since A is ad~n A the commutation relations are: 

[M i , M j] = c~jMk , 
[Mi , TIL] = AAiMi)TA, 

[TIL' Ty] = 0, 

(summation over repeated 
indices is understood), 

(11) 

where the A(Mi)'S are the images of the M/s in the 
representation A and the {AAiMi)}'S are their 
representative matrices relative to the basis TIL' 
Define the mapping 

All(a) A12(a) A1n(a) tl 

~21(a) A22(a) A2n(a) t2 
a+t-+-

Anl(a) An2(a) Ann(a) tn 

0 0 0 0 
n 

a EA, t E :Rn, t=LtIlTIl · (12) 

Under (12) 
1l=1 

0 0 0 0 

T-+-Il 0 0 0 -- ,uth row, 

0 0 0 0 

0 0 0 0 

C'(M') ..... Jl.,.(M.) )-
Mi-+- An1(Mi) ... Ann(Mi) 0 

0 o 0 

It is easy to verify that the mapping (12) is a 
representation of P. This representation is faithful 
because of the faithfulness of A. If A where not faithful 
the mapping (12) would again define a representation 
of P. But this representation would be unfaithful 
since the A(Mi)'S are no longer linearly independent; 
its kernel is the kernel of A. 

5. CLASSIFICATION OF THE INHOMOGENI­
ZATIONS OF SEMISIMPLE LIE ALGEBRAS 

In this section we investigate the problem of the 
classification of all inhomogenizations of a given real 
semisimple Lie algebra. This problem has already been 
considered by Rosen in Ref. lCh). His classification 
relies essentially on the statement that two inhomog­
enizations of a semisimple Lie algebra are isomorphic 
only if the defining representations are equivalent. 
There exist, however, cases where isomorphic in­
homogenizations are produced by inequivalent rep­
resentations as well. The following analysis is 
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devoted to the generalization of Rosen's statement in 
order to include these cases. 

Definition: Two finite-dimensional representations 
tl. and tl.' of a Lie algebra A will be called quasi­
equivalent if they have equal dimension and if there 
exists a nonsingular endomorphism A of the vector 
space on which they act and an automorphism I 
of A such that 

(13) 

Observation: Quasiequivalence is an equivalence 
relation. 

We shall now prove the following: 

Theorem: Two inhomogenizations P = :R,n ~ X A 
and P' = :R,n ~,x A of a given semisimple Lie algebra 
A are isomorphic if and only if the defining representa­
tions tl. and tl.' are quasiequivalent.23 

Observation: P and P' agree as vector spaces. 

Proof: (a) Assume first that tl. and tl.' are quasi­
equivalent. We denote the Lie product in P by [x, y]~ 
and in r by [x', y']~,. The mapping J: (t, I) ---+ 
J(t, l) = (A(t), 1(1) is an isomorphism of Ponto P'. 
Indeed, it is obviously bijective and linear. Further, 

J[(t, 1), (s, m)].1 

= J(tl./(s) - tl.m(t), [I, m]) 

= (Atl./(s) - Atl.m(t),l[1(/), l(m)]) 

= (tl.~wA(s) - LY[(m)A(t), 1[1(1), l(m)]) 

= [(A(t), 1(1», (A(s), l(m»]<1' = [J(t, I), J(s, m)]<1" 

(b) Conversely, let J be an isomorphism of P 
onto r. We remark first that :R,n ~ X A is a Levi 
decomposition of P (see Ref. 6, p. 91). Indeed, let S 
be the radical of P. :R,n is a solvable ideal, so :R,n S S. 
In fact, if it were not so, we would have S ('\ A ¢ 0. 
Now, S ('\ A is a subalgebra of a solvable algebra (S), 
so it is solvable. But S ('\ A is also an ideal in A, 
and this contradicts the hypothesis of semisimplicity 
of A. In the same way, :R, n ~,x A is a Levi decomposi­
tion of r. 

By the uniqueness of the radical, it is evident that 
J(:R,n) = :R,n, i.e., 

J(t, 0) = (A(t), 0), 

where A: t ---+ A(t) is a nonsingular endomorphism of 
Rn (actually, it is an automorphism of :R,n). 

Set 
J(O, I) = (t l , 1(/». 

•• V. Berzi and V. Gorini, Nuovo Cimento SIB, 207 (1967). 

The mapping I: 1---+ l(l) is an automorphism of A. 
Indeed, observe first that it is an endomorphism, as 
can be proved by a trivial calculation. Further, if 
mE Ker I, 

J(O, m) = Ctm' 0) = (A 0 A-1(tm),0) = J(A-1(tm), 0) 

=> (0, m) = (A-lCtm)' 0) => m = O. 
From 

J[(O, I), (t, 0)].1 

= J(tl.I(t), O) = (Atl.lt), 0) 

= [J(O, I), J(t, 0)]<1' = [(tl' 1(/», (ACt), 0)].1' 

= (tl.' [(nA(t), 0), 

we get, by the arbitrariness of t, 

Atl.1 = tl.~(!)A, VI EA. 

Comparison with (13) shows that /j. and /j.' are 
quasiequivalent representations. The proof of the 
theorem is thus completed.24 

Observation: Obviously, equivalence of two rep­
resentations implies their quasiequivalence. The 
converse, however, is not true in general. 25 This will 
be shown by the following example. Consider the 
simple real Lie algebra sl (n, R) (i.e., the Lie algebra 
of the n x n traceless real matrices), n > 2. The 
mapping 

I: a ---+ l(a) = _aT, a E sl (n, R) (14) 

is an automorphism of sf (n, R). 

By definition, the self-representation of sl (n, R) 
and its contragredient (14) are quasiequivalent, thus 
giving rise to isomorphic inhomogenizations. But 
they are not equivalent, since there exists no non­
singular n x n matrix S with the property that 

SaS-l = _aT, Va E sl (/1, R).26 

However, it is interesting to note that, if Aut A is 
connected, quasiequivalence implies equivalence. In 
fact, we recall that the Lie algebra of Aut A is Der A. 
Then, the hypothesis of connectedness of Aut A 
implies that every I E Aut A can be written as a 
product of a finite number of automorphisms of the 
form exp D, with DE Der A. Further, as A is semi­
simple, Der A = ad A (see Ref. 6, p. 74). So 

8 

I = II exp (ad a j ), a j EA. (15) 
j~1 

2. Note that the requirement of semisimplicity of A has been used 
only in the course of proving the necessity of the condition, and 
precisely to establish that J maps:R n onto :R n. 

'"It is precisely this point which seems to have been overlooked 
by Rosen. (see Ref. 1 h). 

.6 Take a to be symmetric. SaS- 1 = -a implies a and -·a 
to have the same characteristic roots which, for arbitrary a, is 
impossible. 
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Let now A and A' be two quasiequivalent representa~ 
tions. Then, by definition 

One has 

A/(x) = AA (U exp (ad aj)(x) )A-1
• (16) 

A(exp (ad a)(y» = A (~o ;! (ad at(y») 

00 1 
= I - (ad A(a)t(A(y» 

n=O n! 

= {exp A(a) }A(y){exp (-A(a»}. 

By iterated application of this formula, Eq. (16) 
becomes 

8 

A/(X) = A II [exp A(aj)]A(x) 
j=1 

s 
x II {exp [-A(as+1_ j )]}A-1 

j=1 

= BA(x)Ir\ 

i.e., A' and A are equivalent. 
We are now in a position to give a solution to the 

problem of the classification of the inhomogenizations 
of a'given real semisimple Lie algebra A. In fact, it is 
clear that by virtue of the theorem stated and proved 
above, there exists a one-to-one correspondence 
between the classes of isomorphisms of the inhomog­
enizations of A and the classes of quasiequiv­
alence of its representations. The further observation 
that, as a consequence of semisimplicity, the 
representations of A are completely reducible, allows 
a classification of the inhomogenizations of A in 
terms of its irreducible representations27 to be given 
in the manner explained in the following: 

Given two finite sets ~ and ~' of finite irreducible 
representations of A,27 we shall say that ~' is quasi­
equivalent to ~ if there exist a one-to-one mapping 7T 

of ~ onto ~' and an automorphism I of A such that 
YQ'E~, 7T(Q')O] is equivalent to 0'.28 It is easy to 

27 As has already been made clear, it is to be noted that, since we 
are dealing with inhomogenizations of real Lie algebras, the term 
"representation" means "real representation," i.e., ~epresentation 
by linear transformations of a real vector space. In ~hl~ c~nnectlon, 
irreducibility is intended with respect to real Similarity trans­
formations, which by no means implies irreducibility with respect 
to complex ones. Consider for instance an irreducible essentially 
complex n-dimensional matrix representaion p. The real 2n-dimen­
sionaI representation 

ll_ (Rep - Imp) 
p - Imp Rep' 

uniquely determined by p, is irreducible with respect t~ real simi.larity 
transformations. On the other hand, by performmg a sUitable 
complex change of basis, it is possible to reduce it completely to the 
form 

(~ ~.) 
(see Ref. 21). 

2. We do not exclude that some of the a's are equivalent. 

verify that the above defined relation between sets of 
irreducible representations of A is an equivalence 
relation. Further, it is clear that, given two quasi­
equivalent representations A and A', the correspond­
ing systems ~(A) and, respectively, ~(A/) of their 
irreducible components are quasiequivalent and, 
conversely, the representation built as a direct sum of 
the elements of a system ~ of irreducible representa­
tions is quasi equivalent to the representation formed as 
a direct sum of the elements of a system ~/, quasi­
equivalent to ~. This establishes a one-to-one corre­
spondence between the classes of quasi equivalence of 
the representations and the classes of quasi equivalence 
of the finite sets of finite irreducible representations, 
and, therefore, a one-to-one correspondence between 
these latter classes and the classes of isomorphism of 
the inhomogenizations. Thus, the inhomogenizations 
of A can be classified by means of the finite sets of its 
finite irreducible representations (up to quasi:' 
equivalence). 

We shall conclude this section with a closer look 
at the structure of the inhomogenizations of a semi­
simple Lie algebra. This clarification is important for 
the problem of the generalization of O'Raifeartaigh's 
lemma, treated in Sec. 6. 

Consider an inhomogenization :R,n Ll X A and let A 
be semisimpIe. The mapping 

ad.1ln/:t--[/,t], lEA, tE:R,n, 

which is a derivation of :R,n, defines a representation 

(17) 

of A on the vector space :R,n. By definition, this 
representation identifies with A. As A is completely 
reducible, the vector space :R,n decomposes into a 
direct sum of invariant irreducible subspaces. These 
can be grouped in two sets, one consisting of one­
dimensional subspaces and the other of the subspaces 
of dimension higher than one: 

:R, n = U1 ffi U2 ffi ... ffi U m ffi Tl ffi T2 ffi ... ffi Tk 

dim Uj = 1, dim Tj > 1. (18) 

Consider the representation induced in anyone of the 
U;'s. A priori, 

adu, I = oclEu, (Eu, = identity mapping of Ui ). 

Hence 
adu,[r, s] = o. 

But, as A is semisimple, [A, A] = A, so that adu , I = 
0, VI E A, i.e., 

[A, Ui ] = O. (19) 
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Consider now one of the T;'s. Set T; = [A, Ti ]. 
Since Ti is irreducible, it can be neither T; = 0 nor 
Ti' c T;, T; =F O. For, in the first case, every one­
dimensional subspace of Ti is an invariant subspace 
and this contradicts the hypothesis of irreducibility 
of Ti • As to the second case, note that it would imply 
[A, T;] S;;; T;, which again contradicts the hypothesis. 
We conclude that 

(20) 

We can express this result by saying that the vector 
space :R, n is a direct sum 

:R,n = U EEl T, (21) 

where U and T are invariant, not necessarily irre­
ducible, subspaces of:R,n, for which 

[A, U] = 0, [A, T] = T. (22) 

Observe that, as A is centeriess, U is just the center 
of P. Thus, we can say that every inhomogenization 
of a semisimple Lie algebra A is of the form 

P = U EEl TEEl A, (23) 

where U is the center and T is an Abelian ideal such 
that [A, T] = T. This analysis shows that the system 
~ (defined up to quasiequivalence) of finite irreduc­
ible representations of A which classifies a given 
inhomogenization, can be uniquely specified through 
a pair {m, Q} where m is the dimension of the center 
of the inhomogenization and Q is the system of all 
nontrivial components of ~ (some of which may of 
course be equivalent). We can thus give a more 
refined formulation of the criterion of classification. 
To every inhomogenization P = :R,n ,:l X A of a given 
real semisimple Lie algebra A we can uniquely associ­
ate a pair {m, Q}, where m is the dimension of the 
center of P and Q is the system of nontrivial irreducible 
components of the defining representation. 

Conversely, to every (up to quasiequivalence) pair 
{m, Q} constructed as above, there corresponds a 
unique (up to isomorphism) inhomogenization. 

A convenient notation for designating an inhomog­
enization P = :R,n ,:l X A of a Lie algebra A is I,:lA. 

According to the above classification, if A is semi­
simple we shall write P = l(m,mA. In writing down 
explicitly the elements of Q, we agree to regroup 
together those which are equivalent under the same 
symbol, paired with an integer specifying the number 
of elements of the regroupment (i.e., the number of 
equivalent elements). Specifically, the notation is 
I,:lA = l{m,al A = l{m,n,,:l,,n.t.., ... ,n,t.,}A, where Ll1' 
Ll2' ••• , Lls are the nontrivial inequivalent irreducible 

components27 of D.. and nj is the number of times the 
component D.. j is contained, up to equivalence, in the 
reduction of D... With respect to complex similarity 
transformations, the generical irreducible component 
Ll j may either be still irreducible, or reduce to the 
direct sum of two essentially complex irreducible 
representations which are one the complex conjugate 
of the other. 29 In this second case (which of course 
can occur only if the dimension of D..i is even) it is 
natural to indicate D.. j by af, ai denoting one of its 
two essentially complex irreducible components (the 
other being denoted by an.21 

In general, given a sequence {D..1' D..2 ,··· ,D..r } of 
(not necessarily irreducible) inequivalent real rep­
resentations27 of a (not necessarily semisimple) Lie 
algebra A, we agree that l{n,t." ... ,nrt.r}A denotes the 
inhomogenization of A relative to the representation 
formed as the direct sum of the D../s where the ith 
component appears in the sum, up to equivalence, ni 
times. If D..1, say, is trivial, we write simply n1 in place 
of n1D..1. If two sequences {D..1' D..2 , ••• ,D..r } and 
{D..~ , D..;, ... ,D..~} are quasiequivalent (in the sense 
that there exists an automorphism I of A such that 
D..~ is equivalent to D.. j 0 l) the two inhomogenizations 
l{n,t." .. . ,nrt.r}A and l{n't.", ... ,nrt.r'}A are isomorphic no 
matter whether A is semisimple or not (compare the 
theorem stated at the beginning of the section (see 
also Ref. 24). 

6. GENERALIZED O'RAIFEARTAIGH'S 
LEMMA 

As an application of the theory and results discussed 
in the foregoing, we shall consider in his section to 
what extent a well-known lemma proved by O'Rai­
feartaigh for the Poincare algebra7 can be generalized 
to arbitrary inhomogenizations of real simisimple Lie 
algebras. 

The lemma under consideration can be stated as 
follows. Let ~ denote the Lie algebra of the Poincare 
group (the inhomogeneous Lorentz group) and T the 
Abelian ideal of the space-time translations. Then, 
for every finite dimensional Lie algebra G containing 
~, there exists a positive integer k = k( G) such that, 
for an arbitrary sequence {t1' t2, ..• , tk} of elements 
of T, the identity 

[tk> [tk-1, [tk- 2 , ••• , [t1 , g] ... ]]] = 0 (24) 

holds, for every g E G. 
This result is essential for the proof of O'Raifear­

taigh's theorem7.8 which, as is well known, prevents 
any reasonable mass splitting within the context of 

•• The proof of this proposition, which holds for nonsemisimple 
Lie algebras as well, is given in the Appendix. 
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finite-dimensional Lie algebras containing the Poin­
care algebra :r. 

In order to clarify our purpose, we note that the 
Poincare algebra :R,4 Il X L is a particular example of 
inhomogenization of a semisimple (actually simple) 
Lie algebra, the algebra L of the homogeneous 
Lorentz group. Here, the defining representation is 
the self representation of L, which is irreducible and 
nontrivial. Our aim is precisely to show that the 
properties of the Poincare algebra on which the proof 
of (24) relies, are only those which can be expressed 
by saying that we are dealing with an inhomogeniza­
tion of a semisimple Lie algebra with respect to a 
representation which does not contain trivial com­
ponents. In thIS way, the lemma can be shown to 
hold for a wide class of in homogenizations which can 
be exactly specified when the homogeneous factor is 
semisimple. 

We start by giving the following: 

Definition: Let P = :R,n Il X A be an inhomogeniza­
tion of a Lie algebra A. A subset T .:::::; :R, n will be called 
an 0 subset if for every finite-dimensional Lie algebra 
G ::::J P, there exists a positive integer k = keG) such 
that (24) holds for an arbitrary sequence {t1' t2 , ••• ,tk } 

of elements of T and for every g E G. 

We immediately note that, if T is an 0 subset, the 
subspace [T] generated by T is an 0 subset too. Thus 
we can confine ourselves to the consideration of 0 
subs paces of :R, n. 

Theorem 1: There exists a maximal 0 subspace 
which contains every 0 subspace. 

This theorem is an immediate consequence of the 
following: 

Lemma 1: The necessary and sufficient condition 
for a subset T .:::::; :R, n to be an 0 subset is that ada t is 
nilpotent, VI E T. 

Proof: The necessity of the condition is trivial. To 
prove the sufficiency, we start by selecting in T a 
maximal number r (~n) of linearly independent 
vectors {#1' #2' ... , #r}, so that every t E T is a linear 
combination of the #/s. By hypothesis, (ada #;)k i = 0 
(j = 1,2, ... ,r), wh~re kl' k2' ... ,kr are <:ertain 
positive integers. Let k = max {k j } and k = rk, and 
consider an arbitrary sequence {t1' t2, ... , tk}, tj E T. 
Expanding each tl over the #/s (tl = I;'~l (:J,}~)#;) we 
have, writing simply ad t in place of ada t: 

ad t1 ad t2 ... ad tk 

= 

Since [ad t, ad s] = 0, we can change freely the order 
of the factors in the product ad #;, ad #i • .•• ad #ik 
to get 

ad #;, ad #;. . . . ad # ik 

= (ad #lY'(ad #2Y" .. (ad #rYr, 

with II + 12 + ... + Ir = rk. Since max {Ij} ~ k, we 
get ad #;, ... ad #h = 0 and this in turn implies 

ad tl ad t2 ..• ad tk = 0, 

which is equivalent to (24). 

It is worthwhile to remark that, in the course of 
the proof, we did not have to introduce any hypothesis 
concerning the dimensionality of G so that the lemma 
is true even if G is infinite-dimensional. 

At this point, Theorem I is readily proved. Indeed, 
from Lemma I, we get that the union of two 0 
subsets is an 0 subset. Then, if Tl and T2 are 0 
subspaces, their sum T1 + T2 is an 0 subspace, since 
it is generated by Tl U T2' From this it follows imme­
diately that there exists a maximal 0 subspace con­
taining every 0 subspace, which was what we intended 
to prove. 

We shall say that a generalized O'Raifeartaigh's 
lemma holds for an inhomogenization P = :R,n Il X A 
if the maximal 0 subspace identifies with :R,n. . 

We shall now specify the class of inhomogeniza­
tions of a semisimple Lie algebra for which this 
condition is fulfilled. The relevant result, for this 
purpose, is embodied in the following: 

Theorem 2: Let T be a subspace of :R,n with the 
property that 

[A,T]=T, (25) 

then T is an 0 subspace.3o 

We first prove the following: 

Lemma 2: Let N be a nilpotent Lie algebra of 
linear transformations of a finite-dimensional vector 
space .At, over a field <I> of characteristic zero, and 
suppose that every pEN can be written as a finite 
sum: 

p = I [a(J), pU>], 
j 

(26) 

with p(;) E Nand 0'(;) some linear transformation of 
.At,. Then every pEN is a nilpotent linear transforma­
tion. 

Proof: Suppose first that <I> is algebraically closed. 
Then a well-known theorem (see Ref. 6, p. 50) states 

30 As the context of the proof will show, the theorem holds 
even if A is not semisimple. 
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that ..A(, breaks up into a direct sum..A(, = ..A(,1 EEl ... EEl 
..A(,,, where the ..A(,;'s are subspaces invariant under N, 
and in each ..A(,i we can find a basis with respect to 
which the restriction Pi to ..A(,i of any pEN is rep­
resented by a matrix of the form 

* 

i.e., Pi is a sum 
(27) 

where n(i) is a nilpotent linear transformation. We 
prove that lX(i) = 0 for every subspace ..A(,i and for 
every pEN. To this purpose observe that, by (26), Pi 
is of the form: 

P - ~ [aU) p(i)] 
i - k i' i , 

i 
(28) 

wher7 a~j) is the restriction to .A(,i of Pia(j) , Pi being 
the projection operator on .A(,i' Equating (28) to (27) 
and taking the trace, we get 

nilX(;) = 0, ni = dim ..A(,i => 1X(i) = O. (29) 

Then there exists a basis in .A(, relative to which the 
matrices of the p's are niltriangular, from which it 
follows that the p's are nilpotent linear operators. 

If the base field <1> is not algebraically closed but, 
all the same, of zero characteristic, we can again 
reach the conclusion that the elements of N are 
nilpotent linear transformations by noting that the 
vector space .A(, on which N acts can be uniquely 
extended to a vector space .A(,c obtained from.;\(, by 
extension of the base field <1> to its algebraic closure C. 

A basis for .A(, over <1> is also a basis for .;\(,C over C 
and every linear transformation "a" of ..A(, can be 
uniquely extended in an obvious way to a linear 
transformation "ac" of .;\(,0 so that 

(a + b)c = a C + be, (ab)o = aCbo 

[a, b]c = [aD, bC], and aC = 0 <=> a = O. 

It is then apparent that the set NC oflinear transforma­
tions of ..A(,c of the form Ii lXiP(i) with p(i) EN and 
lXi E C can be made canonically into a nilpotent Lie 
algebra of linear transformations of .A(, C for which the 
hypothesis of the lemma holds. Then, V pEN, pc is 
nilpotent, which in turn implies that p is nilpotent. 
This completes the proof of the lemma. 

At this point the theorem can be easily demon­
strated. In fact, if p is an arbitrary finite-dimensional 
(real) representation of a Lie algebra G containing P, 

we have that p(7) is a nilpotent (actually Abelian) 
Lie algebra of linear transformations of the (real) 
vector space on which the representation acts. 
Further, we deduce from (25) that Vt E 7, pet) is of 
the form pet) = Ii [P(li)' P(ti)]' with I; E A and 
ti E 7. Then, as the field of the reals is of characteristic 
zero, the hypotheses of Lemma 2 are satisfied for p( 7) 
and we can conclude that pet) is a nilpotent linear 
transformation, Vt E 7. This implies that the relation 

[p(tk ), [P(tle-1), .•• , [P(t1)' peg)] ... ]] = 0 (30) 

holds for an arbitrary sequence {t1' t2 , ••• ,tk } of 
elements of 7, with k ~ 2n, n = dim p. Choosing p 
to be faithful, we see that Eq. (30) implies Eq. (24)31 
and this proves the statement of the theorem. 

We have thus obtained the result that a sufficient 
condition for a generalized O'Raifeartaigh's lemma to 
hold for an inhomogenization P = :R, n a X A of a Lie 
algebra A is that 

(31) 

We shall now show that if A is semisimple, this 
condition is necessary as well. Indeed, we have proved 
in Sec. 5 that, if A is semisimple, the most general 
form of an inhomogenization is given by (23) together 
with (22). These formulas tell us that T is an 0 
subspace. We prove that it is also the maximal 0 
subspace. For this purpose observe that, by definition, 
the property of a subspace 7 of :R,n being an 0 sub­
space implies (22) to hold no matter which finite­
dimensional Lie algebra G we choose, subject to the 
condition of containing P. Thus, to prove that T is the 
maximal 0 subspace it is sufficient, by Lemma 1, to 
find a particular G on which ad U has not a nilpotent 
action. In other words, ada u must have a nonzero 
semisimple part, Vu E U (u ¥- 0).32 Define G as 
follows: as a vector space, it is a direct sum 

G = A EEl P = A EEl U EEl T EB A (32) 

and the subspace A is taken to be an Abelian ideal 
with the property that adA A. = 0 and adA t = 0, 
V A. E A and V t E T, while ada u is required to have a 
'nonzero semisimple part, Vu E U (u ¥- 0). More 
specifically, the commutation relations are postulated 

31 The requirement that G be finite-dimensional enters here. 
In fact? if it were not so, G would not have any faithful finite­
dimensIOnal representation. On the other hand, the existence of at 
least one such representation when the dimension of G is finite is 
ensured by Ado's theorem. 

Note that, alternatively, we could have reached the required 
result (24~ by cho~sing for p the adjoint representation p(t) = ad t, 
thus provmg the mlpotency of ad t. Here again the condition that G 
be fi~ite dimensional is essential, because the adjoint representation 
acts m the vector space underlying G. 

32 For the decomposition of a linear transformation into a semi­
simple plus a nilpotent part, see N. Helgason, Differential Geometry 
and Symmetric Spaces (Academic Press, New York, 1962), p. 131. 
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to be such that U E8 T E8 A is the given inhomogeniza­
tion, while the elements of A have the following 
brackets with the elements of P: 

[A,a] =0, [t,a]=O; AEA, fET, aEA 

[u i , a,,] = L Dp,.{ui)ap. (33) 
p 

Here, {Ui} and {a,,} denote bases for U and A, respec­
tively, and the mapping U -+ D(u) is a representation 
of U by nonnilpotent linear transformations of A.sS 

It is easy to verify that all the Jacobi identities are 
satisfied as well as the bilinearity of the commutators, 
so that G is a Lie algebra. Further, denoting by gA 
the projection on A parallel to P of any element 
g E G, we have ada u(g) = ada U(gA)' This proves 
that ada u has a nonzero semisimple part, thus 
furnishing the required result, namely that T is the 
maximal 0 subspace relative to the particular G 
chosen above.34 

Thus we have established that O'Raifeartaigh's 
lemma holds for an inhomogenization of a semisimple 
Lie algebra if and only if the inhomogenization is 
centerless. As to inhomogenizations of nonsemisimple 
Lie algebras, for the lemma to hold it is sufficient, 
for example, that the inhomogenization be relative to 
a completely reducible representation which does not 
contain trivial components [in this case, in fact, 
Eq. (31) is verified]. 
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APPENDIX 

Let S be an n-dimensional vector space over the 
field R of real numbers. We denote by So the complexi­
fication of S, namely, the n-dimensional vector space 
over the field e of complex numbers which is obtained 
from S by extension of the base field from R to· C. 
A basis {e1, e2' ... , en} for S is also a basis for So. 
Any given linear transformation A of S can be 

33 For example, we can choose dim A ~ dim U and D"P(Ui) = 
t'J"it'J{ii' .4 Note, however, that in the U ;6. 0 case the maximal 0 subspace 
relative to a given embedding algebra G may be greater than T. 
For example, let dim U = r > 1 and consider a G of the following 
structure: 

G=AE!)P, 

where the subspace A is taken to be one-dimensional and the 
commutation relations involving A are given by [A, A] = 0, [T, A] = 
0, and [U, A] = A. In this case, the maximal 0 subspace is the direct 
sum of T plus the (r - 1)-dimensional kernel of the representation 
u -+- ad .. u, U E U. 

canonically extended to a linear transformation A 0 

of So in such a way that if Aik is the matrix represent­
ing A with respect to the basis {e1, e2, ... , en} for S, 

n 

Aek = L Aikei , 
i=1 

and Ai~ the matrix representing A ° with respect to 
{e1, e2, ... , en} considered as a basis for SO 

n 

AOek = LAi~ei' 
i=1 

one has A& = Aik . Given a representation /1:a-+ 
/1(a) of a real Lie algebra A by linear transformations 
of the real vector space S (a real representation), the 
mapping /10 : a -+ /1 O(a) = /1(a)O is a representation 
of A by linear transformations of SO which we refer 
to as the complex representation associated (canon­
ically) to the real representation /1. One has the 
following: 

Theorem: Let /1: a -+ /1(a) be a real irreducible 
representation of a real Lie algebra A. Then, if the 
dimension of /1 is odd, the associated complex 
representation /10 is irreducible. If the dimension of 
/1 is even, /1 0 is either irreducible or it reduces 
completely to a direct sum of two irreducible essen­
tially complex representations which are complex 
conjugates of each other (see Ref. 20 for the meaning 
of essentially complex representation). 

Proof: Denote by S the real vector spac:e on which 
/1 acts. By hypothesis, there is no proper subspace of 
S which is invariant under /1. Suppose, on the other 
hand, that there is a proper subspace V of SO which is 
invariant under /1°. Let n = dim S = dim SO and 
k =. dim V < n. The elements of V can be written 
as linear combinations 

where {e1, e2' ... , en} is a basis. for S, ~i E e (i = 
1,2, ... , n), and the n-tuples {~1' ~2' ... , ~n} span a 
k-dimensional subspace of the complex n-dimensional 
vector space en of all n-tuples of complex numbers. 

Consider the following (antilinear) mapping of V 
into So: 

n n 

e: x = L~iei-+x* = L~:ei' (AI) 
i=1 i=1 

where ~* denotes the complex conjugate of ~. 
The image V* = C(V) of V by e is a k-dimensional 

subspace of So. Further, V* is invariant under /1°. 
Indeed, the invariance of V under /1c implies that 
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LlO(a)x = y E V, Va E A and Vx E V. Writing 

and the Llki(a) are real coefficients. Then, 

LlO(a)x* =k~ (~/~Llkia»)ek 

= il (!~iLlkia») "ek = Y* E V*. 

Invariance of V and of V* implies invariance of their 
intersection V () V*. Then, irreducibility of V 
requires either V () V* = V or V () V* = O. Con­
sider the first alternative. Since dim V = dim V*, this 
implies V = V*. Then, if {aI' a2,' .. ,ak}, 

n 

all = !ci/le j , 
;=1 

is a basis for V, the vectors {ai, ai, ... , a:}, which 
form a basis for V*, belong to V (actually, they form 
another basis for V) and we can write, for any x E V, 

(A2) 

This formula shows that the vectors a~ = li(a! - a ) 
" * Jl and all = Ha/l + all) (P = 1,2, ... ,k) generate V 

and since they are linear combinations of the e/s 
with real coefficients [actually, a~ = !~l (1m cj/l)ej 

and a~ = !f=1 (Re ci/l)e j], we get that V admits a 
basis formed by vectors all belonging to S. Let us 
denote by {e1, e2, ... , ek } one such basis 

By the invariance of V we have 

k 

LlO(a)e/l = !Ll.,.(a)e., 
.=1 

the b.,.(a) being of course real. Then, regarding the 
ell's as elements of S, 

k 

Ll(a)ep = ! Ll.,.(a)e., 
.=1 

which proves that the k-dimensional subspace V R of S 
spanned by the e /l's is invariant under b. Since we have 
supposed k < n, this contradicts the hypothesis of 

trreducibility of Ll. The alternative V = V* is thus 
ruled out. 

Consider the other possibility, namely, V () V* = 
O. We remark first that this implies k ::; [nI2]. Next, 
choose a basis {aI' a2, ... , ak}, 

n 

ap = LCj/le j , 
j=1 

for V. By the invariance of V, we have 

LlO(a)ap = 1~1 {~Llu(a)CiP}e/ 

(A3) 

where {O'.,.(a)} is the matrix representing the restriction 
O':a - O'(a) of Llo to V, with respect to the basis 
{aI' a2, ... , ak}' The vectors {ai, ai, ... , a:} form 
a basis for V* and, by the invariance of V*, we have 

LlO(a)a: = I~ t~ Ll1la)C:p}el 

= I~ t~1 Lllj(a)c jp r el 

(A4) 

~here {Ii /l.(a)} is the matrix representing the restriction 
ii:a- ii(a) of Llo to V*, with respect to the basis 
{ai, ai , ... , a:}. Comparing (A3) and (A4) we get, 
by the linear independence of the e/s, 

k k 

!c7vO'vp(a) = Lc~O':,.(a). 
.=1 .=1 

Multiplying by e1 and summing over I from 1 to n, 
gives 

k k 

! O'.p(a)a: = I O':,.(a)a:. 
v=l v=l 

which, by the linear independence of the a:'s, implies 

a.p(a) = O':,.(a). (AS) 

Relation (AS) shows that the restriction pO : a _ 

pO (a) of Ll 0 to the subspace VEt) V* is the direct sum 
of the representation a plus its complex conjugate 0'*. 
The corresponding invariant subspaces are just V 
(acted upon by a) and V* (acted upon by 0'*), and the 
matrix representing pO(a) with respect to the basis 
{a1,a2,'" ,ak,ai,ai,'" ,an for VEt) V* is 

(A6) 
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The vectors 

n 

a; = Ha: + ap) = L(Re cjp)ej , # = 1,2,···, k, 
;=1 

(A7) 

which belong to S, form a basis for V EB V* with 
respect to which the matrix representing pO(a) is real 
and given by 

(
{Re a/ly(a)} 

{1m a/ly(a)} 

-{1m a/ly(a)}). 

{Re a /ly(a)} 
(A8) 

Then, the 2k-dimensional subspace T R of S spanned 
by the vectors (A 7) is invariant under fl.. Therefore, 
by the hypothesis of irreducibility of fl., we must 
have T R = S and this implies 2k = n. If n is odd, 
this is impossible and the first statement of the 
theorem is proved. Let n be even. Then, TR = S, 
V EB V* = SO and we obtain the result that the 
condition of irreducibility of b. together with the one 
that fl. 0 is reducible implies fl. 0 to split into the direct 
sum of a complex representation a plus its complex 
conjugate. Further, a is irreducible and essentially 
complex. It is irreducible because we have required V 
to be an invariant irreducible subspace. It is essentially 

complex because, if it were not so, we could find a 
basis {aI' a2, ... ,ak}, 

k 

ap = LAypay, 
y=l 

for V, with respect to which, Va E A, a(a) is repre­
sented by a matrix {apy(a)} with real entries. Con­
sider then the basis {h ,J,., ... ,fn} for S defined by 

n 
- ~ R 

/; = "",Alifl' 
1=1 

where 
fk+2= a;,· .. ,fn = aZ), 

R ({Re A/lY } -{1m Apy}) 
{Ail} = . 

{1m AI'Y} {Re AI'Y} 

One easily verifies that, with respect to this basis, 
b.(a) is represented by the matrix 

(
{apv(a)} 0), 

o {apy(a)} 

so that b. is completely reducible. 
It remains to show that under the above conditions, 

namely that a is irreducible and essentially complex, 
b. is actually irreducible. For the proof of this fact 
we refer to Ref. 21. 
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Real Lie-algebra inhomogenizations are considered for complex defining representations and some 
emphasis is devoted to the case when the defining representation is irreducible. A theorem is given 
concerning the conditions under which nonequivalent complex representations give rise to isomorphic 
inhomogenizations and a classification is made of the complex inhomogenizations of semisimple Lie 
algebras. 

1. INTRODUCTION 

Inhomogenizations have recently been made the 
object of studies in view of the role that some of these 
generalized Poincare structures seem to play in the 
symmetries displayed by elementary-particle inter­
actions. I 

In a preceding paper2 (hereafter referred to as I) 
we have given a systematic formulation of the general 
concept of inhomogenization both for real Lie 
algebras and real Lie groups, and have clarified the 
connection between the two structures in terms of the 
notion of semidirect product. It was a basic point that, 
as a consequence of the definition, real Lie-algebra and 
real Lie-group inhomogenizations were made relative 
to real representations. However, since essentially 
complex representations occur as well and they are 
no less relevant than real ones, the question arises as 
to whether one can consistently define inhomogeni­
zations also with respect to complex represel'tations. 
In this paper we show that this is indeed possible in a 
very simple and natural way. This is not an unexpected 
fact, since one can add translations in a complex 
representation space as well as in a real one. Through­
out this paper, we shall refer to inhomogenizations 
relative to complex representations as complex in­
homogenizations. 

A specific instance of complex inhomogenization, 
namely the group SL(2, C) inhomogenized relative to 
its self-representation, has been recently considered 
by Flato, Hillion, and Sternheimer in connection with 
the relativistic covariance of the Dirac equation for 
zero-mass particles. 3 Another example is provided by 
IU(p, q), the inhomogenization of the pseudo-unitary 

* Supported in part by the Ministero della Pubblica Istruzione. 
1 Extensive references can be found in our preceding paper 

(see Ref. 2). 
2 V. Berzi and V. Gorini, J. Math. Phys. 9, 816 (1968), preceding 

paper. . 
3 M. Flato, P. Hillion, and D. Sternheimer, Compt. Rend. 264, 

A82 (1967). 

group U(p, q) relative to its self-representation. The 
interest of this inhomogenization has been emphasized 
by Roman and Rosen who have discussed some aspects 
of its enveloping algebra. 4 

In this paper we shall work with Lie algebras rather 
than with Lie groups. The corres?ondence w~~h Lie 
groups can be established in a ~traightforward way 
by means of the results of I. 

In Sec. 2 we collect some standard definitions and 
results to be used in the following. In Sec. j we give 
from the outset the definition of inhomogenization 
of a real Lie algebra A with respect to a complex 
n-dimensional representation p as the inhomogeniza­
tion :R2n 

pR X A of A relative to the 2n-dimensional real 
representation pR uniquely induced by p. We then 
justify this definition by showing that, regarding the 
group of translations in the complex space on which 
p acts as a real Lie group, the Abelian ideal :R2n can 
naturally be interpreted as the Lie algebra of this 
group. In Sec. 4 we introduce the concept of irreduc­
ible inhomogenization for real defining representations 
and prove a theorem which allows an unambiguous 
extension of this concept to include essentially complex 
inhomogenizations as well. Section 5 is devoted to the 
characterization of the conditions on the defining 
representations under which different complex in­
homogenizations of a given real semisimple Lie 
algebra are isomorphic. A theorem is proved which 
gives an answer to this question and allows us to give 
a complete classification of the complex inhomogeni­
zations of any given semisimple real Lie algebra. 

2. SOME STANDARD DEFINITIONS AND 
RESULTS 

For the purpose of free use in the following we 
briefly sketch two formal processes which one intro­
duces in connection with vector spaces and Lie 

• P. Roman and J. Rosen, J. Math. Phys. 7, 2072 (1966). 
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algebras over the complex and real fields: 
(a) the complexification of a real vector space (or 

Lie algebra) and, 
(b) the construction of a real vector space (or Lie 

algebra) from a complex one by restriction of the 
base field. 5 

Process (a) is well known. A given vector space S 
over the real field R can be embedded in a standard 
way in a vector space SO over the complex field e In 
such a manner that a basis {el' ... , en} for S is also 
a basis for So. Sa is called the complexification of S. 
In an analogous way, a Lie algebra A over R can be 
embedded in a Lie algebra A a over e, which is called 
the complexification of A. The vector space underlying 
A a is the complexification of the vector space under­
lying A and the structure constants of A a relative to a 
basis {el , .•. ,en}, which is also a basis for A, are 
real. Indeed, they are the same structure constants as 
those of A with respect to the same basis. As to 
process (b), consider a vector space S over e. By 
restricting the base field to R we deduce from S a 
vector space S Rover R which, as a set, coincides with 
S, bu.t whose dimension is twice the dimension of S. 
Indeed, let {el' ... , en} be a basis for S. Consider the 
decomposition n 

x = !xiei 
i=l 

of a vector XES. Regarded as an element of S R' x 
admits the decomposition 

n n 

X = ! (Re xi)ei + ! (1m xi )1'i, (1'i = ieJ 
i=l ;=1 

It is a trivial matter to show that the set {el' ... , en' 
fl' ... .J1I} is a basis for SR' 

Let now A be a linear transformation of S. Then A 
is automatically a linear transformation of SR' which 
we shall denote by AR. Let {Aik} be the matrix of A 
with respect to the basis {el , ... , en} for S, i.e., 

n 

Aek = ! A;kei' 
;=1 

Then the matrix of AR with respect to the basis 
{el"" ,en,fl"" ,fn} for SR is 

(
{Re Aik} -{1m Aik}). 

{1m A ik } {Re A ik } 

(1) 

If A is a Lie algebra over Rand p:a ----)- pea), a repre­
sentation of A by linear transformations of a complex 
vector space S, the mapping pR: a ----)- pR(a) is a 
representation of A on S R' i.e., a real representation. 
We shall refer to pR as the real representation induced 
by the complex representation p. 

5 F. Gantmacher, Mat. Sb. 5 (47), 218 (1939). 

Consider now a Lie algebra ~ over e. By restriction 
of the base field to R we obtain a Lie algebra ~ Rover 
R. Denote by S the vector space underlying~. 

Then the vector space underlying ~R is SR and if 
{Ml,"',Mn } is a basis for ~, {Ml,"',Mn , 
Nl = iMl' ... , N n = iMn} is a basis for ~R and 
the structure constants of ~ R relative to this basis are 
obtained automatically by taking real and imaginary 
parts of the structure constants c:i of ~ relative to the 
basis {Ml ,' .. , Mn}. Specifically,6 

[Mi' Mil = (Re c:i)Mk + (1m c:;)Nk , 

[Mi' Nil = -(1m c:i)Mk + (Re c:i)Nk , (2) 

[Ni , Njl = -(Re c:j)Mk - (1m c:j)Nk • 

3. INHOMOGENIZATION OF A REAL LIE 
ALGEBRA RELATIVE TO A COMPLEX 

REPRESENTATION 

We turn now to the problem of giving a consistent 
definition of inhomogenization of a real Lie algebra 
with respect to a complex representation. We recall 
the definition given in I of inhomogenization of a real 
Lie algebra A relative to a representation ~ on the 
real n-dimensional vector space Rn , as the semidirect 
product :R,n t. X A, :R,n denoting the n-dimensional 
Abelian Lie algebra over R. 

By definition, thus, the representation relative to 
which the inhomogenization is performed is a real 
representation. We shall extend as follows the concept 
of in homogenization to include complex representa­
tions as well. Let p: a ----)- pea) be an n-dimensional 
complex representation of a real Lie algebra A, i.e., 
a representation of A by linear transformations of the 
complex n-dimensional vector space en. In Sec. 2 we 
have seen that p induces a representation pR of A on 
the real vector space deduced from en by restriction to 
R of the base field. Identifying this vector space with 
R2n, we define the inhomogenization of A relative to 
the complex representation p as the semidirect product 
:R,2n pRx A. 

We shall now make clear the meaning of this defini­
tion. Given a real Lie algebra A, consider its complexi­
fication AO (compare Sec. 2). A complex representa­
tion p of A on en can be extended in a unique way to a 
representation, which we again denote by p, of AO 
on en. In agreement with the definition given in the 
real case, the semidirect product en p x AO (en 
denoting the complex n-dimensional Abelian Lie 
algebra) will be called inhomogenization of AO relative 
to the representation p. Indeed, en is the Lie algebra 
of the complex Lie group of translations in the vector 
space en (this group will be denoted by the same 

• Summation over repeated indices is understood. 
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symbol en as used for the vector space). We now 
show that ;R2n pR X A is a sub algebra of the real Lie 
algebra obtained from en p x A by restriction to R of 
the base field, whereby the Abelian ideal ;R2n can be 
interpreted as the Lie algebra of the group en regarded 
as a real Lie group. Thus we see that our definition is 
consistent, because the elements of ;R2n appear 
naturally as translationlike generators in the space 
on which the representation p of A acts. 

To prove our statement, we choose a basis 
{MI ,"', M r } (r = dim A) for A. Then {MI ,"', 
M r } is also a basis for AG (compare Sec. 2) and the 
set of vectors {MI' . '.' , M" TI , ... , Tn}, where the 
Til's (ft = 1,2,'" ,n) span en, is a basis for en p x AG. 
Denoting by C~j the structure constants of A relative 
to the basis {Ml' ... , M r }, the commutation brackets 
for en p x A C are given by6: 

representation (acting on the complexification SR of 
SR)' can be removed by keeping the notation IpA for 
the case when p is understood as real, while writing 
directly IpRA when p is understood as complex. In the 
latter case, alternatively, as pR is actually equivalent 
to the direct sum of two representations both equiv­
alent to p (compare next section), one can as well use 
the notation of I, I{2P}A. 

Analogous to what has been done in the real case 
(compare I, Sec. 4) we note that, if the n-dimensional 
representation relative to which the inhomogenization 
is made is faithful, we can easily construct an (n + 1)­
dimensional faithful representation of the inhomogeni­
zation. This representation is complex and is defined 
by the mapping 

pll(a) P12(a) 

P21(a) p22(a) 

Pln(a) tl + itn+1 

P2n(a) [Mi , Mjl = c~jMk' 

[Mi , Till = p;.iMi)T;., 

[Til' T.] = 0, 

(3) a + t-+ 

where {P;./Mi)} is the matrix representing the linear 
transformation P(Mi) in the basis {TI' ... , Tn} for en. 

We now go over to the real Lie algebra deduced 
from en p x A G by restriction to R of the base field. 
By choosing for this algebra the basis {Mi' iMi' Til' 
TIl+n = iTIl } (compare Sec. 2) we note that, as a 
consequence of the c:i being real, the subspace 
spanned by the set {Mi' Ta} (i = 1, ... ,r; (J. = 
1, ... ,2n) is a subalgebra r. Recalling formula (1), 
we can write the commutation brackets for r in the 
form6

: 

[M i , Mjl = c~jMk' 
[Mi , Tal = pf;.(Mi)Tp, 

[Ta' Tpl = 0, 

(4) 

and this shows that r can be identified with the Lie 
algebra ;R2n pR X A which was defined as the inhomoge­
nization of A relative to the complex representation p. 

The symbol IpA, which was introduced in I to 
denote the inhomogenization of a real Lie algebra A 
relative to a real representation p, will now be ex­
tended to designate inhomogenizations relative to com­
plex representations as well. Thus, if p is real, IpA = 
:Jtn pX A;ifpiscomplex,lpA = ;R2n pI/X A(= IpIlA). 
n = dim p. The ambiguity in writing IpA whenever 
p is not essentially complex,7 which stems from the 
fact that p can be intended either as a real representa­
tion (acting on a real vector space S R) or as a complex 

7 A complex representation p of a real Lie algebra A will be 
termed essentially complex if there exists no basis in the representa­
tion space with respect to which the operators of the representation 
are represented by matrices with real entries. If this is not the case, 
p is equivalent to a real representation (also denoted by p) and we 
shall say that it is not essentially complex. 

Pn2(a) 

o 
2n 

o 0 

a EA, t = 2.tal~, n = dim p. (5) 
a~1 

Under (5), 
o 0 

o 0 o +- ftth row, 
(5') 

o 0 o 0 

o 0 o 0 

ft = 1,2, ... , n, 

o +- ,uth row, 
(5") 

o 0 0 

o 0 0 

,u = 1,2, ... ,n, 

(5 111
) 

If p were not faithful, the mapping (5) would define an 
unfaithful representation of IpA of which the kernel 
is the kernel of p. Correspondences (5') and (5") tell 
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us that the T,.'s (respectively, the Tp,+n's) are, the 
generators of the real translations (respectively, of the 
purely imaginary translations) in the complex space 
on which pacts. 

Besides (5), two real representations of IpA are also 
easily obtained. One is the real representation induced 
by (5) and it is 2(n + I)-dimensional. The other is the 
(2n + 1 )-dimensional representation defined in I 
[Sec. 4, formula (12)] regarding IpA as IpRA. 

,4. IRREDUCIBLE INHOMOGENIZATIONS 

Among the inhomogenizations of a real Lie 
algebra relative to its real representations, those for 
which the defining representations are irreducible8 

appear to have a particularly simple structure. Be­
sides, all inhomogenizations which, to our knowledge, 
have been considered in physics up to now, are of this 
type. l ,3 In the following, we shall refer to inhomoge­
nizations relative to irreducible real representations, as 
irreducible inhomogenizations. On the other hand, if 
the defining real representation of an inhomogeniza­
tion is reducible, we shall speak of a reducible 
inhomogenization. In connection with irreducible 
inhomogenizations the following question then arises 
naturally: Given an inhomogenization IpA of a real 
Lie algebra A relative to a complex irreducible 
representation p, is IpA an irreducible inhomogeniza­
tion when regarded as an inhomogenization relative 
to the real representation pR, induced by p? And, 
conversely: Given an irreducible inhomogenization the 
defining representation t1 of which is induced by a 
complex representation p, is p irreducible? The two 
questions may be stated in other words, and inde­
pendently of inhomogenizations, by asking if irre­
ducibility of p implies irreducibility of pR and vice 
versa. The answer is furnished by the following: 

Theorem: Let p be an essentially complex n-dimen­
sional representation of a real Lie algebra A and let 
pR denote the real representation induced by p. Then 
pR is irreducible if and only if p is irreducible. On the 
other hand, if p is irreducible but not essentially 
complex, pR is completely reducible to a direct sum 
of two representations both equivalent to p. 

For the proof we require the following: 

Lemma: Let S R denote the 2n-dimensional real 
vector space deduced from an n-dimensional complex 
vector space So by restriction to R of the base field 

8 The term "irreducibility," referred to real representations, has 
to be intended here as "irreducibility with respect to real similarity 
transformations ... 

(compare Sec. 2). Let VR be a k-dimensional subspace 
of S R and let Va denote the subspace of So generated 
by VR . Then, dim Vo::;; k. 

Proof' Every x E V 0 may be expressed by a finite 
linear combination x = !i CiXi, Ci E C, Xi E V R' Let 
{e1 , ••• , ek } be a basis for V R' Write 

Then 

p 
Xi = ! aile 1 , ai 1 E R. 

1=1 

which shows that the set {e1 , ••• , ek } generates V o. 
Since the vectors {el"", ek } are not necessarily 
linearly independent in So, we conclude that dim V 0::;; 
k. 

We now proceed to the proof of the theorem. 
Denote by So the complex space on which pacts. 
The real space on which pR acts is the space S R 
deduced from So by restriction to R of the base field. 
Let pR be irreducible. Then p is also irreducible. In 
fact, suppose there is a proper subspace V 0 of So 
which is invariant under p. Regarded as a set of 
elements of S R' V 0 is a proper subspace of S R and it 
is invariant under pR, which contradicts the hypoth­
esis. Further, p is essentially complex. For, if it were 
not so, we could find a basis for So, {e1 , ••• , en}, say, 
with respect to which the elements pea) (a E A) of the 
representation are represented by matrices with real 
entnes 

n 

pei = ! Pkiek , Pki E R~ 
k=l 

Then, formula (1) gives, for the matrix representing 
pR with respect to the "canonical" basis {e1 , ••• , en' 
11, ... '/n} (j; = iei) for S R, the expression 

which shows that pR is completely reducible to the 
direct sum of two representations both equivalent to 
P, and this again contradicts the hypothesis. 

We shall now prove the less trivial result that irre­
ducibility of P implies irreducibility of pR, if p is 
essentially complex. For, let us suppose that pR is 
reducible. This implies the existence, in S R, of a proper 
invariant irreducible subspace V. We shall distinguish 
three cases, to be treated separately: (1) dim V < 
n = dim So, (2) dim V = n, and (3) dim V> n. We 
note that invariance of V under pR obviously implies 
invariance under p of V 0' the complex closure of V. 

• For simplicity, we write p (pR) in place of p(a) (pR(a)), a E A. 
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Consider the first case. By the previously stated 
lemma we would get dim Va < n, and this contra­
dicts the hypothesis that p is irreducible. 

In the second case, let {el , ••• , en} be a basis for 
V. Then {el' ... , en} must be a basis for Sa as well, 
otherwise we would again obtain dim Va < n, which 
is absurd. Let Pki be the matrix of p relative to the 
basis {el , ••• , en} for Sa, 

n 

pei = L Pkiek' 
k=l 

Since, by hypothesis, V is invariant under pR one has 

n 

pRei = L pf:;ek . 
k=l 

By comparison, one gets 

n 

L (Pki - pf:;)ek = 0, 
k=l 

which implies Pki = pf:;. Hence p is real, at variance 
with the hypothesis. 

Finally, consider case (3). Let {el ,'" ,es}' s = 
dim V> n, be a basis for V. The set of vectors 
{II' ... ,f.} Ui = iei) forms a basis for an s­
dimensional subspace V of S R, which is invariant 
under pRo Irreducibility of p implies that we can select 
in V vectors el ,"', en which form a basis for Sa. 
Then {el ,"', en, iel ,'" ,ien} is a basis for SR 
and, since the ie/s belong to V, we get that the union 
V U V generates SR' Since both Vand Vare invariant 
under pR this is true also for their intersection 
I = V n V which, by the hypothesis of irreducibility 
of V, implies I = 0 or I = V. 

Let 1=0. This would imply SR = V EB V which 
is impossible since dim SR = 2n, dim V + dim V = 
2s and, by hypothesis, s> n. The other possibility, 
I = V, implies V 5; V. Compatibility with dim V = 
dim V gives V = V. Hence, V U V = V, which 
implies V = S R in contradiction with the hypothesis 
that V is a proper subspace of SR' The proof of the 
theorem is thus completed. 

This theorem allows us to extend without ambiguity 
the term irreducible inhomogenization to include 
inhomogenizations relative to complex irreducible 
representations as well, provided the latter representa­
tions are essentially complex. 

Thus, when speaking of an irreducible in homo­
genization, it has to be understood that we mean an 
inhomogenization relative to a real or essentially 
complex irreducible representation. An inhomogeni­
zation of a real Lie algebra A relative to a complex 
irreducible representation p is, in our sense, reducible, 
if p is not essentially complex. 

5. CLASSIFICATION OF THE COMPLEX 
INHOMOGENIZATIONS OF SEMISIMPLE 

LIE ALGEBRAS 

In this section we shall be concerned with the 
characterization of the isomorphism of two inhomoge­
nizations IpA and Ip,A of a given real semisimple 
Lie algebra A, in terms of the relation between the 
corresponding defining representations p and p'. In 
I we have proved that if p and p' are real representa­
tions, IpA is isomorphic to Ip,A if and only if p is 
quasiequivalent to p'.lO It is then evident that if p is 
complex and p' is real, the two inhomogenizations are 
isomorphic if and only if pR is quasiequivalent to 
p'. As to the case when p and p' are both complex, the 
problem of establishing the conditions under which 
IpA and Ip,A are isomorphic obviously reduces to the 
question of when p and p' give rise to quasiequivalent 
induced real representations. This question is answered 
by the following: 

Theorem: The necessary and sufficient condition for 
two complex representations p and p' of a real 
semisimple Lie algebra A to induce quasiequivalent 
real representations pR and p'R is that the decom­
position of p and p' into irreducible components be 
the same, up to quasi equivalence and up to complex 
conjugation of some of the components. 

In other words (compare I, Sec. 5), there should 
exist a one-to-one mapping 7T of the set :E whose 
elements are the irreducible components of ponto 
the set :E' of the irreducible components of p', and an 
automorphism I of A such that, Vcr E:E, 7T(cr) 0 I is 
either equivalent to a or it is equivalent to a*, the 
representation complex conjugate to a. 

Proof: We start by showing that the condition is 
necessary. Observe first that, as obviously p and p' are 
of equal dimension, the complex vector space Sa on 
which p acts can be identified with the one on which 
p' acts. Correspondingly, pR and p'R can both be 
made to act on the same space S R, which is the real 
vector space obtained from Sa by restriction to R of 
the base field. 

Let now Pik be the matrix representing p (supposed 
to be n-dimensional) relative to a basis {el , e2, ..• , en} 

for Sa: L:=l pek = Pikei.9 By (1), the matrix represent­
ing pR relative to the basis {el , e2, •.• , en' iel , ie2, 
. .. , ien } for S R is given by 

(
{Re Pik} -{1m Pik}). (6) 

{1m Pik} {Re Pik} 

'.0 We rec~1l the defini.tion of quasi equivalence of representations, 
which .was Introduced In I, Sec. 5. Two representations p and p' 
o~ a LI.e algebra. A are t~rmed quasiequivalent if they have equal 
dimenSIOn and If a nonsIngular endomorphism A of the vector 
space on which they act and an automorphism I of A exist such 
that ApI = pil!lA = (p' 0 I)IA, VIE A. 
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It is easy to see that pR, considered as acting on the 
complexification S~ of S R' is completely reducible to 
the direct sum of a representation equivalent to p plus 
a representation equivalent to p*, the complex 
conjugate of p. This reduction is accomplished 
through the similarity transformation induced by the 
following block matrix: 

_ (iE -iE) T- , 
E E 

(7) 

with E the n X n unit matrix. 
Indeed,ll 

(
Re p -1m p) 

11 T 
1m p Re p 

= !(-iE E)(Re p 
2 iE E 1m p 

-1m P)' (iE 
Rep E 

= (: :*). (8) 

Now, as A is semisimple, p is completely reducible to 
a direct sum of irreducible components 

Pl 

(9) 

o 
Hence, combining (8) and (9), the complete reduction 
of pR is written 

PI 

o 

Pr 

* Pl 

o 

* Pr 

.(10) 

11 We suppress matrix-element indices, in order to simplify the 
notation. 

By virtue of the quasiequivalence of pR to p'R, 
there exists an automorphism I of A such that a basis 
can be found for S~ relative to which the matrix 
representing p'R displays the completely reduced 
form 

Pi 0 I 

ps 0 I 

o 

o 

(11) 

On the other hand, since p'R is induced by p', there 
exists another basis for S~ relative to which p'll is 
completely reduced to a direct sum 

p~* 

p~* 

o 

o 

'* Pt 
(12) 

Now, as is well known, when a representation is 
completely reducible, its decomposition into irre­
ducible components is unique except for order and 
except for equivalence. Hence t = r and, by setting 

P* - P p'* - p' (J' = 1,2,' .. ,r), we have that 
j - J+r , j - i+r 

there exists a permutation 7T of the indices 1, 2, ... , 2r 
such that P1TW 0 I is equivalent to p~ (it = 1, 2, ... , 
2r). This simply tells us that a given irreducible com­
ponent p; of pi is either quasiequivalent to one of the 
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components of P (if 1 ::;; 17(i) ::;; r) or it is quasiequiv­
alent to the complex conjugate of one of these com­
ponents (if r + 1 ::;; 17(i) ::;; 2r). 

We now turn to the proof that the condition is suffi­
cient. Specifically, suppose that the decomposition of P 
and P' into irreducible· components is the same up to 
quasi equivalence and up to complex conjugation of 
some of the components. This implies the existence of 
two bases {e(1) ••• ell) e(2) .•. e(2) •.. e(r) ••. 

l' '11' l' '32 ' '1' , 
e(r)} and {e'(1) '" e'(ll e'(2) .•. e'(2) •.• e'(r) 

ir 1" ii' l' ';2' '1' 
•.. , e;!r)} for Sa with respect to which P and P' 
respectively, display the completely reduced formsl2 

PI o 
P2 

• •• e'~r) ie'(r) ..• ie'.(r)} is 
, 3'1" l' '3'(' 

p~R 0 
,R 

P2 

p'R~ (17) 

0 
where 

(Re PI -1m PI) p;R~ of (18) 
1m PI Repi 

or 

( 
Re PI 1m PI) 

p;R~ 0 f, 
-Imp! Repi 

(19) 

P~ (13) according to whether P; = P! 0 lor p; = p~ 0 I. 
Consider the n x n block diagonal matrix 

Al 0 
0 

and 
Pr A2 

p~ 

p~ 

p'~ (14) 

0 

Here, for any given 1 = 1,2, ... ,r, and denoting by 
I a suitable automorphism of A, the matrix p; is 
either equal to the matrix PI 0 f, or it is equal to the 
complex conjugate matrix p~ 0 I. The matrix repre­
senting pR with respect to the basis {ell) .•• e~ll 

l' '31 ' 
iew ... ie~ll ••• e(r) •.• e~r) ie(r) .•• ie~r)} for 
l' "1 ' '1' '3r' l' '3'1' 

SR is then 

pR~ (15) 

0 
with 

pf~ (Re PI 

Imp! 

-Imp} 

Rep! 
(16) 

Similarly, the matrix representing p'R with respect to 
the basis {e'(ll ..• e'(1) ie' (I) ••• ie'(I) ... e'(r) 

l' '11' l' ';1' '1' 

12 The meaning of the labels on the basis vectors is self-explana­
tory: the vectors {ei","" e::)} (respectively, {e~ill, ... , e;~"}), 
I = I, 2, ... , r, span the invariant irreducible subspace of So 
on which the irreducible component PI (respectively, pI) acts. 

R= (20) 

o Ar 
where the lth block Al is 2kdimensional and has the 
structure (E being the j! x jl unit matrix) 

Al = (: ;) (21) 

or 

A I =(: :), (22) 

according to whether p;R is given by (18) or by (19). 
One easily verifies that 

o 

0 ,R 
Pr 

pf 0 

=R of R-1. (23) 

0 p~ 
This establishes the quasiequivalence of pR' to pRo 
The proof of the theorem is thus completed. 

Complex inhomogenizations form a special sub­
class of the class of all inhomogenizations of a given 
real Lie algebra. 
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A complete classification of the complex inhomo­
genizations of a real semisimple Lie algebra can now 
be given which easily stems from the preceding 
theorem and from the analogous classification which 
was given in I for arbitrary inhomogenizations. 

Specifically, to every (up to isomorphism) complex 
inhomogenization of a real semisimple Lie algebra 
we can uniquely associate a pair (m, n), where the 
nonnegative integer m is half the dimension of the 
center of the inhomogenization13 and n is a system 

of complex irreducible representations which is fixed 
up to quasi equivalence and up to complex conjugation 
of some of its elements. Conversely, to every such 
pair there corresponds a unique (up to isomorphism) 
inhomogenization. 
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the pair-correlation function admits a Toeplitz determinant representation. On the basis of the recently 
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1. INTRODUCTION 

Recently Wu1 has investigated the asymptotic 
behavior of the pair-correlation function2 (S,.sk+N) 
along a row of the infinite rectangular Ising lattice, 
as the separation distance N increases indefinitely at 
fixed temperatures. Wu's approach uses the similarity 
between the Toeplitz determinant DN = lai-jl~-\ 
representing the correlation,3 and the corresponding 
Wiener-Hopf sum equation of its formal generating 
function F(e) = L~oo anein8 , to obtain asymptotic 
expansions for the Toeplitz determinant. The relevant 
generating function F(e) is given explicitly by 

_ [1 - Ae-i8 . 1 - Bei8

J
i 

F(e) - 1 _ Be-i8 1 _ Aei8 ' 

(T < Tc , 0 < B < A < 1) 

1 T. T. Wu, Phys. Rev. 149, 380 (1966). 
2 Since we only deal with pair correlations we simply refer to them 

as correlations. 
3 E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys. 

4, 308 (1963). 

= ie-ii8[ 1 - Be
i8 Ji 

1 - Be-i8 ' 

(T= Te , 0 < B < A = 1) 

__ -i8[ (1 - A-V8)(1 - Bei8) Ji 
- e (1 _ A-1e-i8)(1 _ Be-i8) , 

(T > Tc , 0 < B < A-I < 1), (Ll) 

where the parameters A and B depend on the inter­
action energies between nearest-neighboring pairs 
of spins and on the temperature (see for example, 
the paper by Green4). The square root is taken such 
that for T < Tc ' F(7T) > 0 and In F(27T) = In F(O), 
for T = Te, F(27T) = -F(O) = i, and for T> Teo 
In F(27T) - In F(O) = -27Ti. 

The purpose of this article is to point out that 
Wu's analysis can be applied directly to correlations 
along "axes of symmetry" of more general lattices, 
such as the triangular, hexagonal, and modified 

• H. S. Green, Z. Physik 171, 129 (1963). 
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A complete classification of the complex inhomo­
genizations of a real semisimple Lie algebra can now 
be given which easily stems from the preceding 
theorem and from the analogous classification which 
was given in I for arbitrary inhomogenizations. 

Specifically, to every (up to isomorphism) complex 
inhomogenization of a real semisimple Lie algebra 
we can uniquely associate a pair (m, n), where the 
nonnegative integer m is half the dimension of the 
center of the inhomogenization13 and n is a system 

of complex irreducible representations which is fixed 
up to quasi equivalence and up to complex conjugation 
of some of its elements. Conversely, to every such 
pair there corresponds a unique (up to isomorphism) 
inhomogenization. 
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Yamamoto lattices, since these correlations can also 
be expressed as a single Toeplitz determinant DN ~ 
DN(A, B), with different values of A and B depending 
on the lattice and the relative orientation of the spins. 
In order to show this, use is made of the transforma­
tions of the partition function as developed by Fisher5 

and Green.' Because certain spin sites in the basic unit 
cell remain invariant under these transformations 
(i.e., they are not summed over in the reduction 
process), the correlation between two of these spins 
can be reduced to a standard form, which can be 
expressed, using the Pfaffian approach, as the 
product of the eigenvalues of a homogeneous integral 
equation.' The integral equation is then identified 
with the eigenvalue equation of a Toeplitz determinant 
DN(A, B),6 with the appropriate values for A and B. 
This includes in particular, as shown in Sec. 6, the 
known results for the row and diagonal correlations 
on the rectangular and triangular lattices which were 
derived by means of a slightly different Pfaffian 
approach.3 •7 

Taking the papers by Wu and Green as our starting 
point, we obtain from the known asymptotic expansion 
of DN(l, B), the asymptotic behavior of the correla­
tions- at the critical point for the various lattices, in 
terms of the ratio of the radial separation distance 
r = Irl to the first nearest-neighbor lattice spacing a1. 

2. THE RECTANGULAR LATTICE 

For the infinite rectangular lattice with interaction 
energies -1i = -kTKi between nearest-neighboring 
horizontal (i = 1) and vertical (i = 2) pairs of spins, 
the parameters A and B are given, in Green's notation,' 
by 

(2.1) 

where Xi = th Ki = e-2K,· and its dual is given by 
xi = th Ki* = e-2K, (i = 1,2). 

F or temperatures above and below the critical point 
the question of the asymptotic decay of the row 
correlation has been completely settled.1.8 The rate at 
which the Toeplitz determinant DN = DN(A, B) con­
verges to its limit is 

DN ",)2 (~~! [1 + o(!)} (T> T.) (2.2) 

and 

DN - [2......, [2 A2N2 [~J2[1 + o(.!)J, 
27TN 1 - A N 

(T < T.), (2.3) 

• M. E. Fisher, Phys. Rev. 113,969 (1959). 
6 R. E. Hartwig, Australian J. Math. (to be published). 
7 J. Stephenson, J. Math. Phys. 5, 1009 (1964). 
8 L. P. Kadanoff, Nuovo Cimento 44, 276 (1966). 

where 
1= [(1 - A2)(l - .82)/(1 - AB)2]t 

is the spontaneous magnetization and 

1 = [(1 - B2)j(1 - A-2)(1 - AB)2]t. 

At the critical point, however, the decay has been 
calculated rigorously, only for the diagonal case where 
B = O. With the aid of the theory of Cauchy-Toe pIitz 
determinants, one finds1.9-14 

D 10",- 1--+--E [ 1 17 ] 
N( ,) Nt 64N2 4096N" 

where 

E = exp [-HI + C) - i: ,(2s --: I)J 
8=2 s4 

= 0.645002448 ... 
and C is Euler's constant. 

(2.4) 

For nonzero values of B, Wu derived the following 
result: 

D (1 B) E (1 + B)t[1 1 [1 B JJ 
N, '" Nt 1 _ B - 8N2 "8 - (1 _ B)2 ' 

(2.5) 
on the basis of a conjecture equivalent to13 

I· DN(l, B) I· D~(1, B) (2.6) 
1m = 1m * ' 

N-+oo DN(l, 0) N-+oo DN(I, 0) 

where Dj,(A, B) is the so-called resultant approxima­
tion of DN(A, B). The resultant approximations have 
been discussed elsewhere6 and are readily seen to 
satisfy13 

I· D~(1, B) _ [1 + BJt 
1m * - . 

N-+oo DN(I, 0) 1 - B 
(2.7) 

The assumption (2.6) seems to be correct but has not 
yet been proved rigorously. Suppose we now introduce 
the radial separation vector r = rei8 between the two 
spins, and the first, second, etc., nearest-neighbor 
lattice spacing a1 , a2 , ••• ,etc. Then in general the 
ratio rja1 will be a multiple of the separation index N, 
i.e., rial = yN, where y depends on the lattice and the 
orientation () of the vector r. Hence the correlation 
function wL (rla1) == DN , for a lattice L, can be 
expanded for large-spin separation as 

wL(rja1' () '" E~«() [1 + Ef«()] , (2.8) 
(rla1)t (rla1)2 

• B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949). 
10 M. E. Fisher, Physica 25, 521 (1959). 
11 H. Stillinger and H. L. Frisch, Physica 27,751 (1961). 
18 C. Domb, Advan. Phys. 9, Nos. 34, 35 (1960). 
13 R. E. Hartwig and J. Stephenson, "A Note on Ising Model 

Spin-Correlations" (unpublished, 1965), in which essentially the same 
conjecture (2.6) was made and the verification of the Ornstein­
Zernike law (2.2) above the critical point was also indicated. 

14 R. E. Hartwig, J. Math. Phys. 7, 286 (1966). 
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where 

Ef(O) = (Y 1 + B)! E, 
I-B 

EL(O) - _ y2 [! _ B ] (2.9) 
1 - 8 8 (1 _ B)2 ' 

which are also direction- and lattice-dependent. In 
the special cases where B = Ax~, which include the 
rectangular and triangular lattices as may be seen 
from (7.10), these coefficients can be simplified to 

2 

Ef(O) = (y ch 2K1)lE, Ef(O) = L (ch 4K1 - 2). 
64 

(2.10) 

The expression (2.8) contains a "divergent" factor 
(in the infinite-product sense) which is the same for all 
lattices and yields the r-1 decay. The coefficients Ef 
and Ef have to be evaluated at the critical point for 
the relevant direction 0 under consideration, from 
which some interesting relations between the decay 
of the various correlations can be obtained, indicating 
the 0 independence of the correlation at Tc. The form 
of the asymptotic decay in (2.5) and (2.8) has been 
tested by numerical evaluation of the Toeplitz 
determinants DN at the critical point for the diagonal 
and row correlations on the square and triangular 
lattices.7 Estimates for Ef and Ef exist for these 
cases, and will be compared with the exact values 
obtained. 

For the row correlation on the quadratic lattice at 
the critical point, we have N = r/al' () = 0, Xc = 

.J2 - 1, B = 3 - 2.J2 and ch 2K = .Ji Thus on the 
basis of (2.5) and (2.8) 

2!E [ 1 ] wQ(r/a 1 ,0) "'--1 1+ 2' (2.11) 
(r/a1) 64(r/a1) 

where E is defined as in (2.4). The asymptotic analysis 
of the determinant DN(A, B) can now be applied to 
other planar lattices which have two or more directions 
along which the correlation can be represented by a 
Toeplitz determinant. As a first example we consider 
in the next section the triangular lattice. 

3. THE TRIANGULAR LATTICE 

It was shown by Stephenson,7 using the approach 
of Mont roll , Potts, and Ward, that the row correlation 
on the infinite triangular lattice between spins Sk 

and Sk+N can be expressed as the Toeplitz determinant 
DN(A, B). Ifthe interaction energies between adjacent 
spins in the direction i is -Ji = -kTKi' i = 1, 2, 3 
(labeled anticlockwise), then 

(3.1) 

where as usual Xi = th Ki = e-2K,·, x+ = th K+ = 
e-2K,+>. Kt is here the inversion tr~nsformation 
variable, its dual Kt* being obtained from Ki by a star­
triangle transformation,15 i.e., 

e
-4Kl+ _ ( +*)2 _ (X2 + X3X1)(X3 + X1X2) 

- Xl -
(Xl + x2x3)(1 + X1X2X3) 

(+ cyclic). (3.2) 

When X3 = 0, (3.1) reduces to (2.1) and we obtain the 
rectangular-lattice row correlation. When Xl = 0, Xi 
and B also vanish, and A reduces to (sh 2K3 sh 2K1)-1. 
In this case the correlation reduces to the diagonal 
correlation on the rectangular lattice. For the isotropic 
triangular lattice at the critical point N = r/a1 , Xc = 

2 - .J3, B = 7 - 4.J3 and ch 2K = 2/.Ji Hence 
application of the asymptotic expansion (2.5) yields 

wT(r/al' 0) ,..., (j3)1 (r/~1)1 [1 - 192(~/a1)2} (3.3) 

where 0 = 0, 7T/3, 27T/3. Similarly for the diagonal 
correlation on the quadratic lattice at T = To, N = 
r/a2 , a2 = a l .J2 and B = 0, so that by (2.4) 

2iE [ 1 ] wQ(r/a1 , 7T/4) ,..., --1 1 - . (3.4) 
(r/a1) 32(r/a1)2 

Comparison of the asymptotic constants in (2.8) 
shows that 

E~(O) = E~(7T/4) = 2iE = 0.703380156· .. , 

E[[(O) = C!)! E~(O) = 0.66861896 ... , (3.5) 
and 

Ef!(O) = -lEf/(7T/4) = -3Ef(0) = -i'-4· 

These as well as their ratios agree very closely with the 
"exact" numerical estimates of El = 0.66865 and 
E~(7T/4) = 0.70338. 7 

Let us now also compare the asymptotic constant 
E[(1 + B)/(1 - B)]l in the expansion (2.5) of D N, with 
the determinant of order one, namely 

Dl = D1(1, B) = 1 + ~ arc cos (1 - B), (3.6) 
7T(B)Jr 1 + B 

which generally serves as a good first approximation. 
Along the row of the rectangular and triangular 
lattices Dl(A, B) represents the nearest-neighbor 
correlation which equals the normalized energy 
U(T)/U(O). For these two cases the critical values of 
Dl = 1//2 = 0.7071068 and DI = i = 0.66 compare 
favorably with the values of E~(O) and El(O), respec­
tively. For the diagonal correlation on the square net, 

10 J. Stephenson, J. Math. Phys. 7, 1123 (1966). 
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Dl does not represent the critical energy but its value of t j +m 
2/7T = 0.636197 ... is again close to the value of 
E = 0.6450024 ... . 

In the following two sections we derive from the tri­
angular lattice a more general class oflattices S, which 
have three directions along which the correlation 
function can be expressed as a Toeplitz determi­
nant. The transformations used will be the general­
ized decoration- and star-triangle transformations as 
given by Fisher,5 which are applied such as to leave 
the "pure" triangle spins t j , i.e., spins on the triangular 
sublattice, invariant. This enables us to reduce the row 
correlation between two of these "pure" triangle spins 
to the row correlation on the triangular lattice with 
different parameters A and B. Due to the invariance 
of the triangle spins the radial separation distance r 
between the spins tk and t! remains the same in all 
cases, whereas the first nearest-neighbor lattice 
spacing al depends on the particular lattice. As a 
specific example we discuss first the case of the 
hexagonal- and diced-lattice row correlations. 

4. THE HEXAGONAL LATTICE 

The hexagonal lattice with m spins per row has two 
sublattices and therefore two spins per cell, a "pure" 
hexagonal spin h j and a "pure" triangle spin tj , 16 

where j is an index referring to a lattice point (see 
Fig. 1). The correlation between two triangle spins tk 

and I! can be expressed as usuaP,4,16 as the ratio of a 
perturbed to an unperturbed partition sum or generat­
ing function, i.e., 

where17 

111 

R;I(Yi) = 2! tkt! II (1 + ylhjtJ+m) 
b t j~l 

x (1 + Y2hjtj+1)(1 + Yahiti) (4.1) 

and RH(Yi) is given similarly except that the factor 
tkt! has been omitted. M is here the total number of 
spins (= Mh + M t ) and Yi are the weights of the 
bonds of the hexagonal lattice. In most cases, such as 
here, the generating function R is a simple multiple 
of the partition function Z; sometimes however, R 
may represent only a "pseudo" partition function 
(see below in Sec. 7). The star-triangle transformation, 
which "commutes" with the factor tkt!, is performed by 
summing over the ± 1 values of the hexagonal spins hj 

16 H. S. Green and C. A. Hurst, Order-Disorder Phenomena 
(Interscience Publishers Inc., London, 1964). -

17 For convenience all the constant factors in the definition of 
Rand R* have been omitted. 

I \ 
/ \ 

I \ 
I YI \ 

x2 / \ x3 

/ \ 
I \ 

I \ 
I \ 

I \ 
tj xI tj+1 

FIG. 1. The triangular and hexagonal lattices. 

giving 

R;(xi ) = [1 + ~lX2xaJ 1I1hR~(Yi) 

= ! tkt! II (l + XltjtJ+l)(l + x2tjtHm) 
t 

X (1 + XatJ+ltJ+m) (4.2) 

and a similar expression for RT(Xi)' 
Hence 

(4.3) 

where Yi = xt* = th Kt* is given by (3.2) in terms 
of Xi and conversely 

del - / 
Xl = -- (+ cyclic), (4.4) 

del + / 
with 

d = 1 + YlY2 + Y2Ya + YaYl, 

el = 1 - YlY2 + Y2Ya - YaYl (+ cyclic), 
and 

/2 = dele2ea• 

Even though the critical points for the lattices in 
class S vary, at their individual critical points their 
parameters A all equal unity and their parameters B 
all take the same value. This follows from the definition 
of the critical point. Hence for these lattices all 
correlations which are derived from the triangular 
row correlation, have at their critical point the same 
asymptotic expansion 

ET [ ET ] wL(r/ai , 0) ""~ 1 + __ i - , 

(r/a i ) (r/a i )2 
(4.5) 

where ai = ya! is the appropriate higher-order lattice 
spacing. Since the factor y will in general change from 
lattice to lattice, so will the asymptotic expansion in 
terms of (r/a l ). For the isotropic hexagonal lattice 

N = r/a2 and a2 = al-/'3, which when substituted in 
(3.3) yields at T = To, 

E{!(O) = 3iE[ = 2iE, 

£[1(0) = 3Ef = -l4' (4.6) 
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To test for radial symmetry we compare the ratios 

wH(r/al,1T/6) d Uc/Uo 
H an --, 

w (r/a2' 0) Dl 

which should approximately be equal. Assuming this 
we have 

E{f( 1T/6) 4.3-1 2 
E[ '" -i- = ..)3' 

which shows that 

2 
E{f(1T/6) '" ..)3 E[ = 0.772061 ... , (4.7) 

which is reasonably consistent with the value of 

E{f(O) = 3iE; = 0.767041 .... 

5. THE DICED LATTICE 

The diced lattice is obtained from the triangular 
lattice by a "double" star-triangle transformation.5 

It may be considered as having three spins h;, s;, and 
tj per unit cell (see Fig. 2). The perturbed generating 
function is now given by 

M 

= !!! tkt! II (1 + wlh;t;+m)(l + w2hjti+l) 
b • t 1=1 

x (1 + Wahjt;)(l + Zlsjti+1)(l + Z2Sjti+m) 

X (1 + zas;t;+m+1)' (5.1) 

where Wi = ut* and Zi = vt* are given by (3.2) in 
terms of Ui and Vi, respectively, which in turn satisfy 

U i + Vi ( . 1 2 3) Xi = 1= , , • 
1 + UiVi 

(5.2) 

On summing over the hj and s; spins, Eq. (5.1) yields 

R~(Wi' Zi) 

= [ 2 JMh[ 2 JM'R~T(Ui' Vi)' (5.3) 
1 + U1U2Ua 1 + V1V2Va 

where M = Mh + M. + M t and Rt,T(Ui' Vi) is the 

/ 

/ 
/ 

I 
/ 

/ 

/ 
/ W3 

I \ 
/ \ 

\ 
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\ 
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\ , 
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\ 
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/ 

f j+1 

FiG. 2. The diced lattice. 
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/ 
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I 

perturbed generating function of the double-triangle 
lattice, which reduces to 

R~T(Ui' Vi) 

= [(1 + U1Vl)(1 + u2v2)(1 + uava)]MtR;(x;). (5.4) 

The parameters A and B for the diced lattice are 
thus directly defined through (3.1), (3.2), and (5.2) 
in terms of Wi and Zi. Since in the isotropic case the 
lattice spacing al is the same as for the hexagonal 
lattice, it is evident that at T = Tc , the asymptotic 
expansions (3.3) and (4.5) also hold. Unlike the 
partition function, the dual of the row-correlation 
function on the diced lattice, does not give the row 
correlation on the Kagome lattice, but instead gives a 
Toeplitz-determinant representation of the so-called 
"misfit seam," separating regions of opposite spin 
on the Kagome lattice. It was shown by Ferdinand18 

that the dual of a pair correlation on an arbitrary 
planar lattice is a misfit seam, and the present analysis 
of generating correlations which have a Toeplitz­
determinant representation, can be carried over 
directly to this problem.19 

6. THE GENERALIZED HEXAGONAL LATTICE 

The hexagonal and diced lattices are only special 
cases of the class S of generalized hexagonal lattices, 
which are obtained from the hexagonal lattice by the 
generalized decoration- and star-triangle transforma­
tions.5 The generalized decoration transformation 
leaves the spins s; on the basic undecorated lattice 
invariant and hence it follows directly that 

Z~ec(K', E) Z*(K, L) 
(Sk

S
!) = Zdec(K', E) = Z(K, L) , 

(6.1) 

where Ztec(K', L') and Z*(K, L) are the perturbed 
partition functions of the decorated and the origi­
nal undecorated lattice, respectively, together with 
their corresponding spin- and magnetic-interaction 
parameters. Similarly the generalized star-triangle 
transformation leaves the spins t; on the triangular 
sublattice invariant and shows that 

< 
Z~(K', L s , L T ) Z;(K, L1,) 

tkt!) = = , 
Zs(K', Ls, LT ) ZT(K, LT ) 

(6.2) 

where K and K' are the spin-interaction parameters, 
Ls and LT are the magnetic parameters for the star 
and triangle vertices, respectively, and Ls == 0 by 
assumption.5 A combination of the two generalized 
transformations makes it possible to derive from the 
basic hexagonal lattice in zero field, i.e., L' = LT = 0, 

18 A. E. Ferdinand, Ph.D. thesis, University of London (1967). 
19 M. E. Fisher and A. E. Ferdinand, Phys. Rev. Letters 19, 

169 (1967). 
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FIG. 3. The simply decorated hexagonal lattice. 

a class of lattices S, for which the row correlation 
between two basic triangle spins admits a Toeplitz­
determinant representation 

As an example of the combined transformations 
we consider the hexagonal lattice in zero field, in 
which each bond is decorated with a single spin dJ 
(see Fig. 3) and has associated weights Pi = th Li* 
and qi = th Mi*, which satisfy 

Yi = Pigi (i = 1,2,3). 

The perturbed partition sum becomes in this case 

* RDH(Pi' qi) 
"lI 

= ~ ~ ~ tktl IT (1 + P1 hj d~)(1 + p2hjd~) 
t h d j=1 

x (1 + P3h jdN1 + q1d~ti+m)(1 + q2d~ti+1) 
X (1 + q3d;tj). 

Summation over the decorated spins dJ in the per­
turbed generating function R'iJH(Pi, qi) reduces it to 
2MdR'iI(Yi)' whereas summation over the hexagonal 
spins hj gives rise to the perturbed generating function 
of a "starred" lattice. Similar expressions obviously 
hold for the unperturbed partition sums and hence the 
invariance of the row correlation follows. We note 
that in this expression the pure triangle spins cannot be 
removed by summation as this does not leave the tktl 
spin-factor invariant, and thus we cannot deduce that 
the row correlation on the Kagome lattice admits a 
Toeplitz-determinant representation. In the next 
section we examine several generalized rectangular 
lattices which have two or more directions along which 
the correlation has the required structure. 

7. THE BATHROOM-TILE LATTICE 

The bathroom-tile lattice or modified Yamamoto 
lattice is an example of a generalized rectangular 

(b) 

+ 

(a) (c) 

FIG. 4. (a) The simple bathroom·tile lattice. (b) and (c) Two simply 
decorated bathroom-tile lattices. 

lattice20 .21 with external weights Ui = th K; , in which 
each lattice point is replaced by a decorating cluster 
consisting of four spins and four or five weights 
Vi = th K;' (see Fig. 4). Both lattices are a special 
case of the modified Utiyama lattice,22 in which the 
ladder has two or three rungs, respectively. When 
Vs = ° and U 1 = U2 = 1, it reduces to the ordinary 
Yamamoto lattice,23 and if in addition V3 = 1 or 
V3 = 0, then it collapses further to the triangular or 
hexagonal lattice, respectively. We will show that only 
when U1 = 1 can the correlation (s~s~), with cell k 
and cell I in the same row or column (see Fig. 4), be 
expressed as a Toeplitz determinant DN(A, B), where 
A and B are functions of Ui and Vi. The appropriate 
Toeplitz determinant reduces to the known results for 
the triangular and rectangular lattices and al!,o verifies 
the results of Sec. 4. 

Let us consider the perturbed partition sum for the 
"3" direction of the decorated bathroom-tile lattice 
of Fig. 4(b), 

M 

R*(Ui,Vi ) = ~ s~s~ IT (1 + U1S~S;+1)(1 + u2s~s~+m)E, 
s j=1 

(7.1) 
where 

E = (1 + v1s!s;Xl + v2s~s;)(1 + V3S~S~) 
x (1 + v4s~s})(1 + V5S~S;), (7.2) 

m is the number of columns, M (= mn) is the total 
number of clusters, and j is an index referring to a 
cluster. This may be reduced, when u = 1, to a 
multiple of the perturbed partition sum for the 

20 C. A. Hurst, J. Chern. Phys. 38, 2558 (1963). 
21 See Ref. 16, Sec. 5.3. 
22 T. Utiyama, Progr. Theoret. Phys. (Kyoto) 6, 907 (1951). 
2. T. Yamamoto, Progr. Theoret. Phys. (Kyoto) 6, 533 (1951). 
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.. ------O-:'----....:;.--~Sj+m+1 

FIG. 5. The decorated Yamamoto or "crossed" lattice. 

decorated Yamamoto lattice (see Fig. 5), 

R*(Yi) = ! L SkSZ II (1 + yl sm t j)(1 + Y2sHm+1t j) 
s t 

x (1 + Yas Hmtj)(1 + Y4s j t j)(1 + Y5S jSm) 

X (1 + Y6SjSi+m), (7.3) 

which has two spins per cell, Sj = .ry and I j = s!+m' 
two possible extra factors of (1 + YuSjSj+1)(1 + 
YSSjSHm) and where the weights Yi are functions of Ui 
and Vi' The decorated or "crossed" Yamamoto lattice 
of Fig. 5, has in general both first and second nearest­
neighbor interactions, and is a generalization of the 
lattice considered by Yaks, Larkin, and Ovchinnikov.24 

The expression in (7.3) can now be reduced in the 
same way as for the Yamamoto lattice4 to a multiple 
of the standard perturbed generating function 

R*(Xi) = ! SkSZ II (1 + XlSj Si+l)(1 + xasjSi+m) 

• 
x (1 + X2S jSHm+1 + x4sj+1si+m 

- X2X4SjSHlSHmsHm+l), (7.4) 

since the extra factors do not hinder the elimination, 
and the transformation leaves the spin factor SkSz 

invariant. Because the reduction of (7.1) to (7.4) 
als.o holds for the unperturbed partition sum, we have 

(SkSZ) = R*(ui , Vi) = R*(Yi) = R*(xi ) , (7.5) 
R(u i , Vi) R(Yi) R(xi) 

where 

J = k + N (N < m) or I = k + Nm (N < n). 

It was shown by Green4 that this standard ratio can be 
expressed, using the Pfaffian approach, as the product 

. of the eigenvalues of an integral equation. If this 
homogeneous integral equation is written in the form 

AX(ei </» = - F(O) ! ei (</>-8)'X(ei8) dO, (7.6) 1 12
" N-l 

27T 0 ,=0 

•• V. G. Yaks, A. I. Larkin, and Yu. N. Ovchinnikov, Zh. Eksp. 
Toor. Fiz. 49, 1180 (1965) [SOy. Phys.-JETP 22,820 (1966)]. 

it can be identified with the eigenvalue equation of the 
Toep.litz matrix C generated by the function F«(),6 
which is given by (1.1). This can easily be seen on 
writing the eigenvalue equation AX = Cx as 

AX, = Il C,_oX. = ~ (21r F(O)e-i,8 (Il x.ei88) d() 
8=0 27T Jo 8=0 

(0 ~ r < N), (7.7) 

multiplying it by eM, and summing over r. Hence the 
analysis of Sec. 1 is applicable on substituting the ap­
propriate values for A and B, which depend on the 
original lattice and the relative orientation of the two 
spins. It should be noted here that the partition sum 
R(xi) with X 4 ~ 0, is not a proper partition function, 
but merely a "pseudo" partition function with 
"pseudo" crossed-bonds, which does not correspond 
to an actual physically realizable planar lattice, but to 
an auxiliary "eight-terminal" lattice.4 Its nonphysical 
character is further exemplified by its anomalous 
behavior at the isotropic critical point. 

In terms of the weights Xi = th Ki of this eight­
terminal lattice, the parameters A and B are given by 

where 

and 

a-G A=--, 
b-c 

a-G 
B=--, 

b + c 

a = SlC2CaC4 + S3Cl(S2 + S4)' 

b = Cl CI - S2S4), 

c = 1 + S2S4' 
G2 = a2 

_ b2 + c2
, 

Sf = sh 2Ki , Ci = ch 2Ki • 

Consequently 

B x~ - S2S4 

A = 1 - X~S2S4 . 

(7.8) 

(7.9) 

(7.10) 

When 1 S284 1 < 1, the parameters are positive 
satisfy at all temperatures the inequalities 

and 

O<AB<l 

0< BIA < 1, 

while A ~ 1 according to whether T ~ Te. 
Moreover the critical point is also determined by 

the equality 
a = b. (7.10a) 

In order to find the dependence of the weights Xi 

upon the original weights Ui and Vi, let us analyze the 
two stages of the transformation 

R*(Ui' Vi) --+ R*(yi) --+ R*(xi)' 

which will indicate how the Yi are obtained in terms 
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FiG. 6. The auxiliary eight-terminallattice with "pseudo" crossed­
bonds. 

of Ui and Vi, and what effect the extra factors in (7.3) 
have upon the final weights Xi' 

The first stage of the transformation is the reduction 
of (7.1) to (7.3). It is shown in Appendix A that this 
reduction is possible only when Ui = I, and that in 
this case the transformation simply removes the s~ 

spin by means of the star-triangle transformation and 
identifies the spins s} and S~+1 . 

The second stage of the transformation reduces 
(7.3) to (7.4) and is executed using the so called 
"crossed-square" transformation discovered by Green.4 

In the "crossed-square" transformation a "cross" 
consisting of a central spin coupled to four neighboring 
spins can be transformed into a rectangle of four spins 
coupled to each other with either a simple bond or a 
"pseudo" crossed-bond (see Figs. 5, 6). ~ som.ewh~t 
similar transformation was used by FIsher In hIS 
paper on hard-square lattice gases.2S This purely 
algebraic transformation is not restricted to planar 
nets and includes the star-triangle transformation as a 
special case. The corresponding generalized "crossed­
square" transformation is discussed in the next 
section. 

In (7.3) the summation over the tj spins leaves the 
spin factor SkS! and the "bond" factors involving Ys 
and Ys invariant, and yields a kernel of the form 

(1 + Y5Sjsi+l)(1 + YSsisi+m)tp, 
where 

tp = (1 + YlYaSi+lSi+m)(1 + Y2Y4SjSHm+l) 

+ (YlsHl + YasHm)(Y2SHm+1 + Y4Sj)' (7.11) 

Following Green,4 the partition function tp of a 
"cross" can be factorized in the form of (8.2), since 
the consistency condition (8.4) is identically satisfied. 
It is clear that the factorization is unaffected by the 
additional factors involving Ys and Ys' 

2. M. E. Fisher, J. Math. Phys. 4, 278 (1963). 

Rearranging factors under the product II j shows 
further that 

(1 + ZlSjSHl)(1 + ZaSjSj+l)(1 + YsSjSj+l) 

= cl (1 + X l S j S j +1), 

(1 + Z2SjsHm)(1 + Z4Sjsi+m)(1 + YSSjsi+m) 

= c2(1 + xasjsHm), 
which yields 

(21 + 2 3) + Y5(1 + 2l2a) 
Xl = , 

(1 + Z123) + ybl + 2a) 

(22 + 24) + ys(1 + 2224) 
Xa = . 

(1 + 2224) + Ys(22 + Z4) 

(7.12) 

Thus the only effect the additional factors in (7.3) 
have is to change Xl and Xa according to (7.12). 
Application of the generalized star-triangle and 
decoration transformations of Sec. 6, to the "crossed" 
or decorated Yamamoto lattice of Fig. 5, yields a more 
general class of lattices, which have two or ~ore 
directions along which the correlation has the deSIred 
structure. For example see Fig. 7. 

When Ys = Y6 = 0 the correlation (7.5) becomes a 
diagonal correlation on the simple Yamamoto lattice, 
which reduces to the triangular row correlation when 
Y 4 = 1, or to the rectangular diagonal correlation 
when Yl = hand Y2 = Y4' We note that basically 
both transformations reduce a Toeplitz determinant 
DN [A (Y;) , B(Yi)] to a Toeplitz determinant DN[A(Xi)], 

FIG. 7. Two lattices derived from the decorated Yamamoto 
lattice. 
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i.e., they transform the parameter B to zero. And these 
transformations are in fact the only ones possible 
within the Ising-model regime, as we will now show. 
Assuming that IS2S41 < 1, we see from (7.9) that 
b> c > 0 and hence by (7.8) the parameter B will 
vanish if and only if a = G, i.e., when b = c or when 

x~ = S2S4' (7.13) 

Moreover when b = c the parameter A = [(b + e)1 
(a + G)J reduces to 

A =!!. = C1(1 - S2S4) • (7.14) 
a SlC2CaC4 + SaCI{S2 + S4) 

Let us now consider the simple Yamamoto lattice 
and suppose that Y4 = 1. Then this implies, as ex­
pected, that x, = ° so that we are on the triangular lat­
tice. If in addition we put Y3 = 0, then Xl = 0 and we 
obtain the diagonal correlation on the rectangular 
lattice with (7.3) identically satisfied, i.e., 

B=O A=_l_=_l_ 
, S3S2 S~S~' 

where the prime refers to the original system with 
weights Yo' When Y1 = Ya and Y2 = Y4 inspection of 
the factorization (8.2) shows that Xl = XS, (x2 ~ 
X, ~ 0) and that (7.13) is again satisfied. Furthermore 
it can also be shown that 

Since the transformation from (7.1) to (7.3) sums 
over all the ti spins, we may regard it as effectively 
removing the ti spins and replacing it by a set of new 
bonds between its four nearest neighbors. In this way 
it is evident that we may consider the diagonal correla­
tion on the rectangular lattice, when Yl = Y3' Y2 = Y 4' 

and Yo = Y6 = 0, as a row correlation on the associ­
ated tilted eight-terminal lattice with "pseudo" crossed­
bonds and B = 0 (see Fig. 6). 

We conclude this section with an examination of the 
isotropic critical point behavior of the "axial" correla­
tions of the decorated bathroom-tile and Yamamoto 
lattices with Ul = 1. 

Since the simple Yamamoto lattice with equal 
interactions reduces to the square net, it is clear that 
the diagonal correlation derived for it reduces at the 
critical point to (3.4) for large spin separation. The 
critical point of the bathroom-tile lattice is determined 
by the equations26 

(go - U~7) ± U2(gS + U~II) == 0, (7. 1 Sa) 

(go + U~7) ± us(gs - U~6) = 0, (7.lSb) 

i. See Ref. 16, Eq. (5.70). 

where the gi are given appropriately by (A2) or (A 7). 
For the isotropic decorated bathroom-tile lattice of 
Fig. 4(b), with u1 = 1, V1 =V2 =V3=V4=U2=V 

and Vs = 0 or v, this reduces to a single equation 

which has in both cases only one positive zero in the 
interval (0, 1). Their respective numerical values are 

v = Vc = 0.5136198300' .. (vo = 0) 

and (7.16) 

v = Vc = -Ji - 1 = 0.414213563 . .. (V6 = v), 

the latter of which is the same as for the square net. 
The row and column correlations (SkSk+N) and 
(SkSk+.Ym) of this bathroom-tile lattice may be con­
sidered as row correlations on the anisotropic decor­
ated Yamamoto lattice of Fig. 5. To obtain weights 
Yi for the row correlation the critical values of (7.16) 
have to be substituted in (4.4), giving with the aid of 
(AI5) 

w + V5 
Ys = , 

1 + wVs 

Y2 = Ya = v, Y6 = 0, (7.17) 

where 

d - (de)! (1 + 3v2
) - [(1 + 3v2)(1 _ v2)]1 w- -~-'-----''--~---"-~--=. 

- d + (de)l - (1 + 3v2) + [(1 + 3v2)(1 _ v2)]1 

== {O.2187251054 . .. (vs = 0) 
0.1497297975' .. (V5 = v). 

For the column correlation we simply interchange 
the weights Yl with hand Y5 with Y6' whilst the 
critical point remains the same. From the weights Yi 
the values of Xi and B can be found on using (8.2), 
(7.12), and (7.10). Even though the parameter B does 

. not depend explicitly on Y6' it does so implicitly 
through the critical-point equation, which is affected 
by the value of Y6' With the aid of (2.8) and the 
geometry of the lattice, we can compute the required 
coefficients 

( 
1 + B)* Et' = E r' 1 _ B 

and 

for the two correlations (SJrftl) with I = k + N, k + 
Nm. Their numerical values are given in Table I. 
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TABLE I. Numerical values for two correlations <S~I). 

y B 

V6 = 0 k+N v2 0.19142348 

V6 = v k+N 1 0.41421356 

V6 = 0 k+Nm 1 + v2 0 

V6 = v k+Nm 1 + v3 0 

As a last example we consider the row and column 
correlation of the isotropic decorated Yamamoto 
lattice of Fig. 5, withYi = Y (1 ~ i ~ 6). Even though 
the lattice is metrically nonplanar, we can still carry 
through the analysis developed in this section. The 
isotropy implies that the spin states of (8.3) reduce to 

pi = (1 + y2)2 + 4y2, 

p~ = P: = p! = (1 - l)2, 

P: = P: = p~ = P: = (1 -l), 
which shows that 

and 
Xl = X3 = (PI - P2) + Y(PI + Pa) , 

(PI + Pa) + Y(PI - Pa) 

Xa = X, = Pa(PI - Pa) a (Pi > 0). 
Pa(PI + Pa) + 2ps 

(7.18) 

(7.19) 

To find its critical point we cannot use Eq. (7.15) 
since the corresponding bathroom-tile lattice has two 
vertical bonds connecting decorating clusters. Instead 
we employ (7.10a), which yields the following critical­
point equation: 

(7.20) 

Comparison with (8.5) shows that this may be written 
as 

2XI P3P, Pa --=-=- (7.21) 
1 - x~ PIP2 PI 

which reduces with the aid of (7.18) and (7.19) to 

y' + 4y = 1. (7.22) 

This has exactly one positive zero in the interval (0, 1), 

Y = Y. = 0.249038377· ... 

Solving (7.21) for Xl, we obtain 

1 [( a a t-
Xl = - PI + Pa) - PI)], (7.23) 

Pa 
which shows, as required, that 0 < Xl < 1. The 
critical parameter B can now easily be obtained on 
substituting Yc in (7.18) and using (7.10), (7.20) and 
(7.23). Its numerical value is found to be 

B = 0.1107310486· ... 
At the critical point the fact that the generating 

[(1 + B)/(1 - B)]! EL 
0 

EL 
1 

1.10175811 0.7749548 -0.04194694 
1.24650470 0.8039986 -0.13526335 

0.8039986 -0.09106917 

0.8292463 -0.11662659 

function R(Xi) is only a "pseudo" partition function is 
exemplified in the symmetric case by the result that 
B> 0 if and only if x~ < 1, which need not be so in 
general. Hence the weights Xi (1 ~ i ~ 4) can never 
all be equal. 

8. THE GENERALIZED CROSSED-SQUARE 
TRANSFORMATION 

In the generalized "crossed-square" transformation 
the central spin Ii of the "cross" in Fig. 5 is replaced 
by an arbitrary decorating cluster (or mechanical 
system), with energy states E(i), depending on the four 
neighboring spins Si' Si+l' sHm' and sHm+l. The 
contribution to the total partition function from a 
"cross" is 

"" = ",,(SI' SHI, sHm' sHm+l) = ! e-
PE

(!) 
I 

(fJ = k1T) , (8.1) 

which may be written in the form 

"" = b(l + ZISISi+l)(l + Z2sHISHm+l) 

X (1 + zaSHmsHm+l)(1 + z,sisHm) 

X (1 + xasisHm+l + x,sHlsHm 

- xax,sisHISHmsHm+I), (8.2) 

under the assumptions that the central decorating 
cluster is inva"riant under total spin inversion, i.e., 

""(+, +, +, +) = ",,(-, -, -, -) = p~, 

""(+, -, -, +) = ",,(-, +, +, -) = p~, 
",,(-, +, -, +) = ""(+, -, +, -) = P:, 
",,(-, -, +, +) = ""(+, +, -, -) = p!, 
""(+, +, +, -) = ",,(-, -, -, +) = P:, 
",,(-, +, +, +) = ""(+, -, -, -) = P:, 
""(+, -, +, +) = ",,(-, +, -, -) = p~, 

"'(+, +, -, +) = ",(-, -, +, -) = p~, 
and satisfies the consistency condition 

(8.3) 

p~~ + p:p! = P:P: + p~p:. (8.4) 

Otherwise the 16 equations have no unique solution 
for the seven independent parameters. Solving the 
equations on equating spin states, we find first of all 
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that 

and 

PIP2 = 1 + X2 + X4 - X2 X4 

PaP4 1 - X2 - X4 - x2x, ' 

PsPs 1 - X2 + X4 + X2X4 -= 
1 + X2 - X, + X2X4 ' 

the number of "cross" vertices. Since the same reduc­
tion clearly also holds for the unperturbed partition 
function it follows that 

Z~(y;, L e , L R ) R*(x;, L R) 
<SkS~) = = (8.10) 

Ze(Y;, L e , L R ) R(x;, L R ) , 

which reduces to Green's standard ratio when LR = O. 
PIP2PaP4 1 - S2S4 = , 
PSP6P7PS 1 + S2S, 

which then yields' 

PIP2 + P7PS - PaP, - PsPs 
X2 = , 

PIP2 + P7PS + PaP4 + PsPs 

PIP2 + PsPs - PaP4 - P7PS 
X4 = 

(8.5) Combining the generalized "crossed-square" trans­
formation with the transformation of Sec. 6, yields a 
large class of lattices Y (which contains S), which 
have two or more directions along which the correla­
tion has the required Toeplitz structure, and for which 
the derived asymptotic expansion in powers of (r/al) 
holds. 

PlP2 + PsPs + PaP, + P7PS 

Furthermore one easily obtains27 

ct. _ q' 
Zi = -'--, (1::;; i ::;; 4) (8.6) 

cti + q 
and 

b-l = P12(1 + zl)(l + z2)(1 + za)(l + z,) 

X (1 + X 2 + X, - x2x,), 
where 

ctl = PIP,PSPS , cta = PlP4PSP7' 

ct2 = Plpapsps , ct, = PIPa]JSP7' 

and q is a positive root of 
S 

8 -II q - Pi' 
i=1 

Substituting the expressions for Zi in (7.12) shows that 

(PIP4 - P2Pa) + YS(PIP4 + P2Pa) 
Xl = , 

(PIP, + P2Pa) + Ys(PIP4 - P2Pa) 

xa = (PIPa - P2P4) + YS(PIPa + P2P4). (8.7) 
(PIPa + P2P4) + YS(PIPa - P2P,) 

The perturbed partition function Z: for the "crossed" 
lattice in a magnetic field H, can be expressed as 

z* (y. L L) = '" '" s s II e-pJe(s)-PEW (8 8) e I' e' R ,t.,,t.,k! ,. 
s I 

where Je(s) = Je(s, K;, LR ) is the usual Hamiltonian 
with interaction parameters K; = f3J;, y; = th K; 
and Le and LR are the magnetic parameters for the 
"cross" and "rectangle" vertices, respectively. As 
before the assumed spin invariance (8.3) implies that 
La = O. The summation over the energy levels of the 
decorating cluster may again be interchanged with the 
spin factor S~l so that 

Z~(y;, Le , L R ) =fNcR*(x;, LR), (8.9) 

where R* is the partition sum of the "eight-terminal" 
lattice with weights x; = th K;, f = 2bcI C2 and Nc is 

27 In Ref. 4, Eq. (80), ZI and Z3 should be interchanged with Z2 

and z., respectively, and in Eq. (17) the second term should read 
glgo/P. 

9. CONCLUSIONS 

In this paper we have seen how a large class of 
correlations can be derived from the basic rectangular 
and triangular lattice correlations, on making suitable 
transformations which keep certain spins in a basic 
unit cell variant. These transformations do not 
change the Toeplitz character of the correlations, but 
merely change the two basic parameters A and B 
which characterize the lattice and the orientation of 
the spins. With the knowledge of this fact, all the 
known theory concerning the asymptotic expansions 
of Toeplitz determinants can then be applied. In 
particular it was shown on the basis of this theory, and 
a plausible conjecture, that at the critical point there is 
strong evidence of radial symmetry of the correlation 
as the spin separation becomes infinite. We have not 
endeavored to find the most general correlation which 
can still be represented by a single Toepliti deter­
minant, as this appears rather intractable. In the light 
of present developments, however, it seems that this 
question should be considered in the general frame­
work of representations of correlations by block 
Toeplitz determinants and linear combinations of 
Toeplitz determinants, rather than single Toeplitz 
determinants. 
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APPENDIX: REDUCTION OF THE 
PERTURBED PARTITION SUM 

In order to reduce the perturbed partition sum (7.1) 
to the form of (7.3), we have to perform the following 
four steps: 

(i) First of all the product E in (7.2) is multiplied 
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out and expressed in the form 

E = go + glS~S~ + g2S~S~ + gas~s~ + g4S~S} 
+ gss~s~ + g6S}S~S~s~ + g7S!S~, (AI) 

The coefficients gi are given by 

gi =ai + v5bi (0 ~ i ~ 7), (A2) 
where 

al = b2 = VI + V2VaV4' as = b6 = VlV4 + v2va, 

a2 = bl = V2 + VaV4Vl ' aa = bs = VIVa + V2V4, 

aa = b4 = Va + V4VlV2' a7 = bo = VlV2 + VaV4' 

a4 = ba = V4 + VlV2Va, ao = b7 = 1 + vlv2vav4' 

(A3) 

It is easily verified that the constants ai satisfy the 
three identities 

(A4a) 

(A4b) 

seen to be invariant under the transformations 

Ul -+ ul/a., gk -+ a.gk (k = 1,4, 6, 7), 

U2-+U2/{3, gk-+{3gk (k= 1,2,S,6). 

(A lOa) 

(A lOb) 

Moreover if one replaces the factor (l + -u2s;s:+m) by 
(1 + u2stm~) under the product in (7.1) and sums 
over the spin ~, then it follows that the perturbed 
partition sum is also invariant under the transforma­
tion 

U2 -+ u2/{3, gk -+ {3gk' (k = 3,4, S, 6). (AlOc) 

It is important to note here that due to the presence 
of the spin factor S~! one cannot sum over the spin 
s: to obtain further invariances of R*, such as 

Ul -+ ul/a., gk -+ a.gk (k = 2,3,6, 7), 

which does leave the unperturbed partition sum 
invariant. Applying the transformation (AlOc) the 
new kernel becomes 

ala2 + aaa4 = aOa7 + asaa, 

a l aa + a4a2 = aoaa + a?a5 , 

ala4 + a2aa = aoas + a6a?, (A4c) g~ + g{smt; + g~Sjt; + g~Sjtj_m + g~smtj_m 

and hence the two consistency conditions 

glga + g4g2 = gOg6 + g7g6, 

glg4 + g2ga = gogs + g6g?, 

(ASa) 

(ASb) 

which are necessary and sufficient to factorize an 
expression of the form (AI) in the form of (7.2), are 
also identically satisfied. There is no consistency 
condition corresponding to (A4a) unless one of the 
weights Vi (1 ¥= S) equals unity. We note here that if in 
(7.2) we replace E by 

E' = (1 + vls}s~)(l + V2S~S~)(1 + vas~s~~ 
X (1 + v4s~s})(1 + vss~s~), (A6) 

then the coefficients gi become 

gi = ai + vSaH (0 ~ i ~ 7), 

a_i = as_i' (A 7) 

and (ASb) has to be replaced by 

glg2 + gag4 = gog? + g6g6' (A8) 

(ii) On performing the summations over the s; 
and s~ spins, (7.1) reduces to 

R*(Ui,Vi) 

+ g~tj_mtj + g~SjSj+lt;_mtj + g;SjSHl, (A 11 a) 

where 

(Allb) 
.and {3 is arbitrary. 

(iii) In order for this kernel to be factorizable in the 
form of E or E', with s~ -+ Sj+l' s; -+ ti , s~ -+ Si' 
S, -+ t j _ m and Vi -+ Yi' it is necessary and sufficient 
that the coefficients g~ satisfy the first two or the last 
two of the three consistency conditions 

g~g~ + g~g~ = g~g~ + g~g; (E), (AI2a) 

g{g~ + g~g~ = g~g~ + g;g~ (E, E'), (AI2b) 

g{g~ + g~g~ = g~g; + g~g~ (E'), (AI2c) 

respectively. The factorization in the form E' is 
clearly not desirable since it gives rise to a factor of 
(1 + Ystj_mt j ), which represents a bond crossing the 
path of the correlation. Substituting (Allb) in (A12) 
we see with aid of (AS) that (A12b) is satisfied iden­
tically and that (A12a)-(A12c) reduce to 

= 22M 11 SkS! II (go + glUlU2Si+lt j + g2U2Sh and 
s t 

+ gaSjt j _ m + g4ulsHl ti-m + gsu2t j_mt j 

+ gsulU2SjSHmtj_mtj + g7UlSjSi+l), (A9) 

where 

S j = s~ and t j = s!+m. 

With its kernel in this form the partition sum is easily 

glg2U~/{32 + gag4{32 = gOg7 + gsgsu~. (AI4) 

Hence on choosing the parameter {3 such that (AI4) is 
satisfied, the factorization in the form E' is always 
possible, whereas the factorization in the required 
form E is only possible when (A13) is satisfied, i.e., 
when Ul == 1. The same difficulties arise for the 
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correlations along the other directions such as (s:s~). 
Retracing our steps we now see that in this case the 
transformation simply removes the s; spins by means 
of the star-triangle transformation and identifies the 
spins s} and ~+l. Consequently 

R*( .) = [1 + WIW2
W

a]M R*(u. v.) 
Y. 4(1 + w1Vs) .' • 

where 

= II skslII(1 + Y1Si+1t j) 
• t 

x (1 + Y2 th)(1 + Yash-m) 

X (1 + Y4ti-msi+1)(1 + YSSjSHl), (A1S) 

Yl = Wa , Y2 = W2' Ya = Va, Y4 = V4, 

WI + Vs 
Ys = , 

1 + W1VS 

and WI' W2' Wa are given by (4.4) in terms of UZ, VI' 
and V2 • 

(iv) Finally we change the factors (1 + YaSjt;_m) X 

(1 + Y4t;-mSj+l) to (l + YasHmt;)(1 + Y4t;sHm+l) un­
derthe product IT;, which is permitted by the assumed 
helical lattice periodicity, and interchange the 
weights Yz and Y 4, thus completing the first stage of 
the transformation. 

It is noteworthy that without difficulty one may 
introduce in Eq. (7.1) the additional factors of 

(1 + uas}S:+m)(1 + u4~S:+m)(1 + U5S~S~+m)' 
which simply change Yl and Y2 to 

Wa + Ua W2 + U4 
Yl = , Yz = , 

1 + waua 1 + W2U4 

and add an extra term of (1 + Y6SjSHm) to Eq. (AlS). 
The latter factor, however, gives rise to an additional 
vertical bond between the decorating clusters, so that 
the lattice is no longer a simple generalized rectangular 
lattice. 

We note here that the reduction of the perturbed 
partition sum (7.1) for the "3" direction, to the form 

R*(Yi) = I I S~l IT (1 + y1si+1tj)(1 + Y2 t j S/) 
• t 

X (1 + YaSjtj_m)(l + Y4t;-msS+l)(1 + Ystj_mt j ), 

(A16) 

does in fact hold for any generalized rectangular 
lattice in which the decorating clusters have no crossed 
(internal) bonds and are joined by single external 
bonds. Moreover the unperturbed partition sum can in 
this case also be reduced to Green's standard form 
(7.4) in which the spin factor SkSI is omitted. Suppose 
we again denote by s} , s~ , s~ , and s: the four "corner" 
spins of the jth cluster which are connected to the four 
neighboring clusters, then the necessary steps in the 
reduction are largely the same as for the bathroom-tile 
lattice. In (7.1) we have to replace E by the normalized 
ene~gy of the cluster, 

E = IT (1 + vabsis~) 

= go + gIS}S~ + g2S~S~ + gas~s~ + g4S~S~ 
+ gss~s~ + g6S}S~S~s~ + g7S}S~ + a, (A17) 

where the product is taken over all decorated bonds, 
only an even number of spins appears in each summa­
tion and a consists of all the terms which contain one 
or none of the four corner spins. Successive summa­
tions over the ± 1 values of all the spins in the jth 
cluster except s~ and s:' reduces R*(Ui' Vi) to the form 
(A9). Furthermore the same symmetries (AIO) hold. 
The coefficients gi may now be identified with the 
eight fundamental coefficients.fo, 112, ... '/12a4' which 
were obtained by Green and Hurst,20·21 using the 
slightly different technique of counting polygons on 
the decorating cluster. 

The first consistency condition (ASa) or (A12b) is 
now a consequence of the absence of crossed bonds on 
the decorating cluster, whereas the second condition 
(AI2c) can always be satisfied, by choosing the 
parameter {3 appropriately in (A14). For the un­
perturbed partition sum we may interchange the 
roles of the spins S; and II in (A16), rearrange the 
factors under the product IT;, and perform the sum­
mation over the I j spins in the same way as in (7.11). 
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The .method. of Froman and Froman for proving exact quantization conditions is reviewed. This 
f?rmal~sm, unlike the ~sual WKB approximation to which it bears a close resemblance, requires con­
slder~tlOn of ~he .behavIOr .~f the potential everywhere it is defined. This approach leads to proofs that 
certa.~n. quantIzatl(~n condl~IOns are exact without having to compare the results to solutions of the 
Schr?dmger equatIOn obtame~ b~ other means. Using ~he formalism, we prove the correctness of all 
preVIOusly known exact quantization rules for the one-dimensional and radial cases. Furthermore it is 
show.n that exact qua.~t~zation rule~ can be proved for two other potentials. For one of these, no an~lytic 
~olutIO~S to the Schro~~n~er equatIO~ are known. For the latter case, the proof is checked by numerical 
mtegratlon of the Schrodmger equation for a special case. 

1. INTRODUCTION 

One of the successes of the WKB approximation 
has been the justification for and improvement of the 
Bohr-Sommerfeld quantization condition. The WKB 
quantization rule ha~ proved to be a very valuable tool 
when one seeks to find approximate eigenvalues for 
the one-dimensional or radial Schrodinger equation. 
By the use of higher-order correction terms to the 
standard Bohr-Sommerfeld condition highly accurate, 
although nonexact, energy eigenvalues have been 
obtained for a variety of potentials.1 Furthermore, it 
has been known for many years that in the special 
case of the one-dimensional harmonic oscillator the 
standard WKB quantization condition gives rise to 
the exact values for the energy. Proofs of varying 
degrees of rigor have been advanced which demon­
strate the exactness of the quantization condition. 
One method simply compares the WKB result to the 
eigenvalues obtained from an exact solution of the 
Schrodinger equation. Although this constitutes a 
completely rigorous demonstration it is obviously 
not useful in determining the correctness of the 
quantization condition in precisely those cases where 
it is of the most interest, i.e., when the Schrodinger 
equation cannot be solved in closed form, nor does it 
offer any deeper insight into the WKB method. 

A second method proceeds by showing that all 
additional higher-order correction terms to the WKB 
integral vanish for the given potential. 2 These proofs, 
however, are not entirely rigorous since they fail to 
take cognizance of the fact that these correction terms 

• Supported in part by NSF Undergraduate Research Grant 
No. GY752 and NSF Graduate Traineeship. This article is based on 
a thesis submitted, in partial fulfillment of the requirements for an 
M.S. degree, to the Polytechnic Inst. of Bklyn. 

t Pr~sent address: Physics Department, Harvard University, 
Cambndge, Mass. 

1 J. B. Krieger, M. L. Lewis, and C. Rosenzweig J. Chem. Phys 
47, 2942 (t 967). ,. 

• P. N. Argyes, Physics 2., 131 (1965). See also a comment in 
J. L. Dunham's article, Phys. Rev. 41, 713 (1932). 

are only asymptotically valid, as Ii - O. Thus, when 
we prove that all higher-order terms are zero, we can 
only state that the correction to our quantization 
condition is asymptotically zero. It is still possible to 
have correction terms of order e-Iallfi, which are 
nonze~o, but ,:h~ch have an asymptotic series repre­
sentatIOn consIstmg entirely of zeros, i.e., if we add 
to the harmonic oscillator potential a term which is 
small and negative in a region outside the classical 
turning points and zero elsewhere, then all the higher­
?rder correction terms will be zero because they only 
mvolve the behavior of the potential between the 
t~rning points. However, if we calculate the expecta­
tIOn value of the Hamiltonian using the unperturbed 
ground-state wave function we find immediately that 
the perturbed ground-state energy must be lower than 
the unperturbed ground state by terms of O(e-1allli). 

This si.tuation is analogous to one in ordinary 
perturbatIOn theory where it is possible to leave out 
terms of O(e-w') where A. is the coupling constant,3 
t~e ?est known example arising in calculating the 
bmdmg energy of Cooper pairs in the theory of 
superconductivity.' Furthermore, there are known 
cases for which the WKB integral does not give rise 
to the exact eigenvalues, but a modified WKB integral 
does. In these cases it is not even clear what "correc­
tion" terms we must show are actually zero. Thus a 
different approach is necessary if we are to prove the 
exactness of the WKB or modified WKB quantization 
conditions. 

Recently Froman and Froman5 have devised a new 
method to handle this problem. They have developed 
an encompassing, rigorous approach to the entire 
theory of the WKB approximation. Part of their work 
deals wit~ the W~B quantization condition and by 
use of their formahsm they are able to prove rigorously 

3 J. B. Krieger, J. Math. Phys. 9, 432 (1968). 
: L. N. Cooper, Phys. Rev. 104, 1189 (1956). 

N. Froman and P. O. Froman, JWKB Approximation; Contri­
butions to the Theory (North-Holland Publ. Co., Amsterdam, 1965). 
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and unambiguously the exact nature of the quantiza­
tion condition for the special case of the one-dimen- . 
sional harmonic oscillator. 

It is also well known that if we make a slight 
modification of the WKB quantization condition we 
are able to obtain exact-energy eigenvalues for the 
two radial problems corresponding to the Coulomb 
potential and the three-dimensional, isotropic, har­
monic oscillator. Langer6 has justified this modifica­
tion for radial problems in general, and more recently 
the first two correction terms to the WKB integral 
have been derived and have been shown to be identi­
cally zero for the above two potentials.7 Froman and 
Froman (referred to hereafter as FF) also examine 
this situation and are again able to provide a rigorous 
proof of the exactness of the modified quantization 
condition. 

Until several years ago these three cases were the 
only known examples of potentials for which simple 
exact quantization rules existed. Bailey8 then dis­
covered several other potentials which give rise to 
exact q\lantization conditions by use of either the 
WKB or a modified WKB quantization condition. 
However, he could give no justification as to why these 
results should hold, other than that they provided 
the same results as obtained by an exact, analytical 
solution of the SchrOdinger equation. It is the purpose 
of this paper to prove that all of Bailey's quantization 
rules can be obtained by applying the formalism of 
FF to the potentials under consideration. We thus 
avoid the direct recourse of comparing our results to 
the results of solving Schrodinger's equation in order 
to verify the exactness of the conditions. In addition 
we will also discuss other potentials for which no 
exact quantization conditions have previously been 
known to exist. For one of these potentials the energy 
eigenvalue can be obtained from an analytic solution 
of Schrodinger's equation. The other potential, 
however, is of special significance since it is the only 
potential known with an exact quantization condition 
whose Schrodinger equation cannot be solved in 
terms of known functions. 

The potentials we treat in the following sections are 
slight modifications, or generalizations of those dis­
cussed by Bailey or by FF. 

2. THE METHOD OF FROMAN AND 
FROMAN 

Froman and Froman have developed a method for 
solving equations of the form 

d2 --t + Q2(z)ljI = 0, (2.1) 
dz 

• R. E. Langer, Phys. Rev. 51, 669 (1937). 
7 J. B. Krieger and C. Rosenzweig, Phys. Rev. 164, 171 (1967). 
8 P. B. Bailey, J. Math. Phys. 5, 1293 (1964). 

which has a strong relationship to the standard WKB 
approximation employed in quantum mechanics. In 
this section we outline only the barest skeleton of the 
theory of FF in order to establish the tools which are 
necessary to prove the exactness of quantization 
conditions. We do not prove any of the statements 
which appear in this section since all proofs can be 
-found in the monograph by FF or follow readily from 
their results. 

Since we are interested only in quantization con­
ditions some of the restraints imposed on the formu­
las and functions appearing in our discussion will be 
more specific than those employed in the general 
treatment in the Fromans's monograph. 

For problems of interest in quantum mechanics 
Q2(Z) appearing in Eq. (2.1) is 

2m 
Q2(Z) = f1 [E - V(z)] (2.2) 

and is assumed to be an analytic and single-valued 
function of z in some region qf the complex plane 
including the section of the real axis on which the 
physical potential is defined. We assume that, unless 
stated explicitly, the complex plane is cut in such a 
manner as to make all functions which appear in our 
formula analytic and single-valued throughout the 
region of interest. In the case when Eq. (2.1) is the 
radial Schrodinger equation we employ the same 
notation except that V(z) will now be an effective 
potential 

Our goal is to establish the exact validity of the follow­
ing equation for the various potentials under con­
sideration: 

L~"lq(X)1 dx = (n + t)7T. (2.3) 

The function q2(X) is real on the x axis and is closely 
related to, although not necessarily identical to Q2(X) 
defined in Eq. (2.2). The exact choice of the functional 
relationship between q2 and Q2 will be determined by 
the nature of V(z) in Eq. (2.2); x' and x" are the two 
real zeros of q2(Z). These zeros must be the only two 
zeros on the region of the real axis of physical interest. 

Much of our attention will be focused on the func­
tion q(z) and on functionals of q(z). All theorems 
stated below are valid only if the phase of q(x) is 
chosen as in Fig. 1. 

The chief object of attention in the FF treatise is a 
certain matrix, called the F matrix, P. Complete 
knowledge of this matrix is sufficient to determine the 
solutions of Eq. (2.1). Since we are not interested in the 
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X 

FIG. 1. Argument of q(x) along the real axis. 

wavefunctions we do not require detailed knowledge 
of the properties of F, and a limited amount of 
information will suffice. The F matrix is a 2 X 2 
matrix which is written as 

F(z, zo) = (Fn(Z, zo) F12(Z, zo»). (2.4) 
F21(Z, zo) F 22(Z, zo) 

F has the property that 

F(Z2' zo) ~ F(Z2' ZJF(Zl' zo), (2.5) 

while the inverse matrix 

F-1(Z, zo) = F(zo, z) 

is given by 

p-1(Z, zo) = 
(
Fl1(ZO, z) F12(ZO, Z») 
F21(ZO,Z) F22(ZO,Z) 

( 
F22(Z,ZO) -F12(Z,ZO»). 
-F21(z, zo) Fu(z, zo) 

(2.6) 

Before we proceed with our enumeration of certain 
properties of F, we find it necessary to define several 
new functions. In particular we define the functions 
w, E, fl. 

w(z) == fqa) d, (p arbitrary point), (2.7) 

(2.8) 

(2.9) 

The latter integration may be taken along any path A, 
provided Eq is analytic along the path (i.e., we cannot 
cross branch cuts). It should be noted, however, that 
fl is nonanalytic and hence path-dependent. Many 
times we will use the notation F(w, wo) interchange­
ably with F(z, zo) and the two expressions represent 
the same quantity but they are functionals of different, 
related functions. 

The general quantization condition derived by FF 
for any arbitrary potential is 

Iq(x)1 dx = (n + t)7T - arg 22 z, + 00 , (2.10) 1"''' F ( ) 

x' F22(z, -00) 

where z is any arbitrary point in the complex plane 
provided that leiw(",) I increases monotonically and 

tends to infinity as x - ± 00, and that fl be convergent 
along a part of the real axis as x- ± 00. For our 
particular choice of potentials we can show that 
F22(Z, + 00)/F22(Z, - 00) is real and hence its argument 
will be 0 or 7T establishing the validity of the simple, 
exact quantization condition Eq. (2.3). We therefore 
need to know the properties of the F matrix which will 
enable us to establish the reality of the above specified 
ratio. 

It is now necessary to examine the limiting prop­
erties of F since we make much use of these limits in 
our proofs. In particular, the limit of p(z, zo) as 
z _ Z, where leiw(z)l_ 00 as z - Z, is of primary 
interest. If we can find a point Zl such that 

(a) all elements of P(Zl' zo) are finite, (b) lim fl(Zl, 
z-+Z 

z) is finite, (c) leiw(z)1 increases monotonically and 
tends to infinity as z - Z along a path A from Z1 to 
Z; then the following limiting properties hold: 

lim Fu(z, zo) exists and is finite, (2.11a) 
z .... z 
lim F12(Z, zo) exists and is finite, (2.11b) 
z .... z 
lim F21(Z, zo)e-2iW(z) = 0, (2.11c) 
z .... z 
lim F22(Z, zo)e-2iw(zJ = 0; (2. 11 d) 
z .... z 
lim F22(ZO' z) exists and is finite, (2.l2a) 
z .... z 
lim F12(ZO' z) exists and is finite, (2.12b) 
z .... z 
lim F21(ZO' z)e-2iW

(z) = 0, (2.12c) 
z .... z 
lim Fl1(zo, z)e-2iW (z) = O. (2.12d) 
z .... z 

All limits which appear in Eqs. (2.11) and (2.12) are 
to be taken along a path from Zo to Zl, and then 
from Zl to Z along the path A described above. 
Furthermore if lim F22(ZO, z) exists and is finite, 

z-+Z 

this limit is independent of how one approaches Z. 
In addition to the limiting values of F, it will also 

be necessary for us to employ certain upper bounds on 
Pew, wo). It is essential that when discussing these 
bounds a definite path A, connecting wand Wo in the 
complex plane be chosen. A number M is found such 
that 

(2. 13 a) 

for any possible division of the path A. The w. form 
an ordered division of the path A from Wo to w where 
w. can assume any of the values of x from 11'0 to 
11'._1 for v > 1 and for v = 1, WI is between 11'0 and 
w. It can then be shown that 

1F11(W, wo) - 11 :::;; 2~ (eM" - 1]. (2. 14a) 
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If the path A. is chosen such that leiwi increases monot-
onically as one moves from Wo to w, . 

le-2iWvl ~ le-2iWo l, 

le2iW11 ~ le2iW I, 
le2i(WI-Wvll ~ l~i(W-wol/. 

(2.13b) 

(2.13c) 

(2.13d) 

Under this assumption for A., the estimates involving 
the remaining elements of the F matrix are 

IF12(W, wo)1 ~ 2~ [eM/' - 1] le-2iWo /, (2.14b) 

IF21(w, wo)1 ~ _1_ [eM/' - 1] le2iw l, 
2M 

(2.14c) 

IF22(w, wo) - 11 

~ l.u + _1_ [eM/' - 1 - M.ul le2i(w-wo'l. (2. 14d) 
2M 

Care must be exercised if we choose a path A. where 
leiwi does not increase monotonically from Wo to w, 
and we want to employ estimates similar to (2.14). 
In these situations we must be certain that a finite M 
exi§ts in order to employ Eq. (2.I4a). To use Eqs. 
(2.l4b)-(2.14d) additional caution is needed and we 
must find a Wi such that 

le-2iWY I ~ le-2iw'/, 

for any Wv ; a w" such that 

le2iw11 ~ le2iw"/, 

and then 

(2.15a) 

(2.15b) 

(2.15c) 

Thus 1e-2iwl is a maximum along A. at' w = w' and 
lesiwi is a maximum along A. at w = w". Equations 
(2.14a)-(2.l4d) become 

IFll(w, wo) - 11 ~ _1_ [eM/' - 1], (2.16a) 
2M 

IF12(w, wo)1 ~ _1_ [eM/' - 1] le-2iw'l, (2.16b) 
2M 

IF21(w, wo)1 ~ 2~ [eMJl - 1] le2iw''/, (2.16c) 

IF22(W, wo) - 11 

~ l.u + _1_ [eM/' - 1 - M.ul le2i(w"-w"I. (2.16d) 
2M 

The final information which we need follows from 
the definition of the elements of P. In Eq. (2.7) when 
we defined w, it was stated that the lower limit of 
integration was arbitrary. Naturally the choice of 

various different points alters the value of wand in 
general any arbitrary functional of w. However, it 
turns out that 

Fn(w, wo), F22(W, wo), F12(w, wo)~iW, 

F 21(W, wo)e-2iW (2.17) 

are all independent of our choice of the lower limit in 
(2.7). 

Finally, the definition of Fss( w, wo) involves only 
terms of the form 

in such a manner that if this term is real, F22(w, wo) 
itself will be real. Clearly this fact proves important in 
the following discussion. 

The above equations, conditions, and discussions 
supply us with the tools with which to prove exact 
quantization conditions. With these theorems at our 
disposal we can proceed to establish the desired rules. 

3. PROOF OF EXACT QUANTIZATION 
CONDmONS 

We open this section by listing the various potentials 
for which exact quantization conditions have been 
demonstrated. Along with the potentials we list the 
computed values of the energy eigenvalues when such 
epergies can be written explicitly in closed form. All 
constants appearing in Table I are assumed to be 
positive. It is also assumed that the boundary condi­
tions on tp for each problem are such that tp vanishes 
at the end points of the stated interval. In all cases n 
starts from n = 0 and assumes all positive integral 
values unless explicitly restricted. 

The proofs of the exact quantization condition for 
the first three potentials are to be found in FF. 
Potential I is exactly the same as that employed in 
their monograph, while potentials II and III differ 
slightly because of the addition of a general term 
b;,2/2mr2 which breaks up the well.)known I degeneracy 
of these potentials. However, the addition of this 
term does not effect the proof or validity of the 
quantization rules as presented by the Fromans. 

The table shows that for cases II and III we must 
subtract 1/4r2 from Q2 corresponding to the familiar 
replacement of 1(1 + 1) by (l + !)2. As we soon see 
this choice of q2 different from Q2 is typical of problems 
which contain second-order poles of Q2 in the finite z 
plane. We now proceed to establish quantization 
rules for potentials N-VnI. In order to simplify our 
equations somewhat we choose our system of units, 
such that ;,2/2m = 1. 



                                                                                                                                    

TABLE I. Potentials possessing exact quantization conditions. 

Potential Range of x Energy eigenvalues 

I. V = ikx' -00 <x< +00 E = "(k/m)!(n + !) 
VO bft" 1(1 + lW -Vgm 

II. V= --+- + O<r< 00 
E = 2""[n + t + ((l + i)2 + b)!)2 r 2mr2 2mr2 

III. _ !k 2 ,,2b l(l + lW 
V - r + 2mr' + 2mr' O<r<oo E = (~y [Zn + 1 + ((l + !)2 + b)!J 

IV.a 
-Yo _", [emVOa2 lr T V(x) = --x -00 < x < +00 E = 2ma2 -",- + 4 - (n + !) 

cosh2 -
a 

V.a 7TX VO 
V(x) = Vocot2

- = -- - Vo 
a sin" 7TX 

O<x<a 7T'''' [em Voa' 1 Y T E = - Vo + 2ma2 ~ + 4 + (n + !) 
a 

VI.b 
_ Ae-ar be-ar {[n + ! + !(1 + 4b/cx2)!Jcx - A}2 

V(r) = (1 _ e-ar) + (1 _ e-ar)2 O<r<oo E= -
4[n + ! + t(l + (4b/cx2)!)J"cx2 

VIe V(x) = Ae-2
"" - Be-"" -00 <X<oo E = -!! [(~r - (a(n + !)")T 

Z ZA (mB)! 

VIII. V(X) = Ae"'" + Be-2
"" -oo<X<OO 

q' 

Q' 

1 Q2 __ 
4r2 

1 Qa __ 
4r" 

Qa + 
Z 

4aa cosh"-
a 

Q2 _ 7T" 
4a' sin" 7TZ 

a 
cx,2e-cz:r 

Q'- 4(1 - e-ar)2 

Q2 

Q2 

Comments 

Linear harmonic oscillator 

Coulomb potential and 
degeneracy breaking term 

Three-dimensional isotropic 
harmonic oscillator and 
degeneracy breaking term 

[
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No closed expression for E 
exists, and we must rely on 
numerical integration of the 
quantization condition 

a The exact quantization condition for these potentials was first proposed by Bailey (Ref. 8). 
b For the choice b = 0 these energy levels agree with those derived by A. Bhattacharjie and E. C. G. Sudarshan. Nuovo Cimento 25. N4 864(1962). For the functional form of the wavefuncllon see either Bhattacharjie 

and Sudarshan for the case b = 0, or A. H. Bose, Nuovo Cimento 32, N3 679 (1964) for a more general case. 
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Case IV: Due to the existence of poles at z = 
a7Ti(n + t) we must choose q2(Z) different from Q2(Z) 

q2(Z) = Q2(Z) + 1 = E + 4a2Vo + 1 
4a2cosh2(z/a) 4a2cosh2(z/a) 

(3.1) 

The reason for this particular choice becomes evident 
when we examine the convergence of the f-l integral. 

Along the real axis the phase of q(x) is chosen to 
agree with Fig. 1 and from Eq. (2.10) the exact 
quantization condition for q2(X) as above is 

i"'''lq(X)1 dx = (n + t)1T - arg F22(Z, + (0). (3.2) 
:c' F22(Z, -co) 

As we previously noted, if we can establish that 
F22(Z, + (0)/F22(Z, - co) is real we will have arrived 
at our exact quantization rule given by Eq. (2.3). In 
order to show this we choose z = a1Ti/2 and proceed 
to prove that both F22 (1Tai/2, + (0) and F22(7Tai/2, 
- co) are real. 

The first step is to cut the complex plane so that the 
phase of q agrees with Fig. 1. The branch points of 
q occur at the zeros and poles of q2. The poles of q2 
occur when cosh2 z/a -+ 0 or z -+ ± (n + t)a1Ti/2 
and they are poles of the second order. The zeros of q2 
occur when 

cosh ~ = ;a[ _(4a2V~ + l)f. 
(Only the positive square root gives rise to real zeros 
of q2 and this restricts the possible values of E.) The 
zeros correspond to the values of z for which 

± h-l {I [(4a2Vo + I)]!} + . z = cos - a1Tl. 
2a -E 

The pole-zero diagram for the complex plane is 
depicted in Fig. 2. The Fig. 2, and all other diagrams 
of the branch cuts of the complex planes appearing in 
this section, conform to the following notation: 
x designates a pole of q2, 0 designates a zero of q2, 
~ designates a branch cut of q. 

We also imagine the branch points to extend to 
infinity both in the + i direction and the - i direction 
for all five cases under study. As we soon see, this 
extra infinity of branch points makes essentially no 
contribution to the considerations of concern. 

Region I consists of all points x to left of zero 4. 
Region II consists of all points x to the right of zero 
4 and to the left of zero 5. Region III consists of all 
points to the right of zero 5. Region IV consists of all 

iy 

9 

3 
5 

2 

1 
~ 

FIG. 2. Branch cuts in the complex plane for case IV. 

points x + (a1Ti/2) with x > O. Region V consists 
of all points x + (a1Ti/2) with x < O. 

All angles measured from branch points below the 
real axis range from -i1T < () < f1T, those measured 
from branch points lying above the axis range from 
-f1T < e < i1T, while ()4 (angle measured from 
branch point 4) has the range -1T < e4 < 1T and 
o < ()5 < 21T. Because both the poles and zeros are 
symmetric with respect to the real axis we see that 
for the angles I and 7 depicted in Fig. 2, ()7 = -()l' 

A similar result holds for the angles of any two 
symmetric branch points. Hence, the contributions 
to the phase from all the poles and zeros not on the 
real axis cancel each other out and the net contri­
butions from the infinite set of branch points is zero. 
Only the branch points 4 and 5 contribute to the phase. 

In region I ()4 + 8s = 1T + 1T = 21T, 

region II 84 + ()s = 0 + 1T = 1T, 

region III ()4 + ()s = 0 + 0 = O. 

The phase for q(z) is 
e 

q(z) = exp (Wo) exp i I...!!..lql 
n 2 

[the! arises from the fact that these poles and zeros 
are for q2, while we are interested in the phase of q, 
where q = (q2)t] and in order to have the proper 
phase according to Fig. 1, eo = -t1T and 

region I q = i Iql, 
region II q = Iql, 
region III q = -i Iql. 

We can also compute the phase of q on the line 
y = a1Tij2 where again symmetry simplifies the choice 
of phase. For this line the only contributing branch 
point is 6. 
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so 

In region IV ()6 = 0, 

region V 06 = -7T, 

( 
i7T) (~2(jn) q = exp - 2 exp - k 2 Iql 

( - 2 appears since 6 is a pole of second order) and in 

region IV q = - i lq\ 
region V q = i Iql. 

This choice of phase for q allows us to make the 
following observations about le2iw(z)I. We see that 
\e2iW(Z) \ increases monotonically as one goes from 
x" - + 00, x' - - 00, a7Tij2 -Ix\ + (a7Tij2), and 
a7Tij2 - -Ixl + (a7Tij2) where Ixl may be 00. Since 
we have chosen to evaluate the elements of P between 
a7Tij2 and ± 00 we must be confident that these ele­
ments exist. If we wish to make use of estimates (2.14) 
and (2.16) we must require that the f.l integral con­
verge in order to obtain finite estimates for the ele­
ments of the F matrix. Therefore, it is necessary for 
us to examine the properties of f.l for the potential at 
hand .. From Eqs. (2.8) and (3.1) we find that 

e(z) = -lj4a
2 

cosh
2 
(zla) 

(
E + 4a2Vo + 1 ) 

4a2 cosh2 (zja) 

1 
+ 2 3 16 (E + 4a Vo + 1 ) 

4a2 cosh2 (zla) 

X {2E(4a
2

Vo + 1) (3 _ 2 cosh2 ~) 
a4 cosh4 (zja) a 

+ 4a
2

J.';, + 1 + (4a
2

J.';, + 1)2} (3.3) 
4a 6 cosh4 (zla) 4a6 cosh6 (zla)· 

As z - ± (n + t)a7Ti, cosh zla ->- 0 and a second­
order pole appears for q2. However, in this limit Eqs. 
(3.3) and (3.l) show that e(z)q(z) --+ 0 and hence p 
defined by Eq. (2.9) is finite as either z or Zo-+ 

(n + t)a7Ti. It should be noted that only by choosing 
q2 different from Q2 in accordance with Eq. (3.1) were 
we able to eliminate the singularity from eq. It is this 
need to insure the corresponding convergence of the 
f.l integral which dictates the choice of q2 for all 
potentials which we discuss. In order to understand the 
motivation for the various specific choices of q2 
different from Q2 which we employ, it is important 
that the manner in which the (Q2 - q2)/q2 term cancels 
out the singularity in the remaining terms of eq be 
clearly understood. We should also check the be­
havior of p as Ixl ->- 00 (z = x + iy). For this 

t:.

iY y=~ Q1ri 

~3t J' J' :: •••• ",x+-2-
_ - J;r t ;r i' it I' P" 

x" X 

FIG. 3. The path A. used in evaluating Fca1Ti/2, + ex). 

situation Icosh zl ~ Isinh zl ~ elxl and 

lim leql oc 1 _ exp (_ 21XI) _ o. 
1001"" <X> Icosh2 (x/a) I a 

Hence the p integral is convergent. Moreover, if we 
evaluate p(z, zo) along a path A chosen such that for 
the entire path A in the complex plane IRe zl- 00 
then the above estimate shows that p(z, zo) -+ O. This 
fact will also be of importance in our proof. 

As we mentioned previously if we can prove that 
both F22(a7Tij2, + (0) and F22(a7Ti/2, - 00) are real 
our exact quantization rule will have been established. 
In the following we only give the proof that F22(a7Tij2, 
+ 00) is real, since the proof that F22(a7Ti/2, - (0) is 
real, is completely analogous. In order to prove that 
F22(a7Ti/2, + (0) is real we employ the 2,2 element 
from Eq. (2.5) with z = a7Ti/2, Z1 = (a7TiI2) + x, 
Zo = + 00 and obtain 

(
a7Ti ) F222 ,+00 

(
a7Ti a7Ti) ( a7Ti ) 

= F21 2' x + 2 F12 X + 2' + 00 

(
a7Ti a7Ti) ( a7Ti ) + F22 2' x + 2 F22 X + 2' +00 . (3.4) 

The path connecting a1Tij2 and + 00 in the complex 
plane is shown in Fig. 3. Since we shall shortly 
establish a result which is equivalent to proving that 
the elements of p[x + (a7Ti/2), x] are all finite and 
since we have already shown that leiW(z)1 increases 
monotonically between x, and x' - + 00 and that 
the p integral converges, we are able to use (2.12a), 
(2.12b) to claim that F12 [x + (lX7Ti/2), + 00] and 
F22 [X + (a7Ti/2), + 00] exist and are finite. Equations 
(2.6) and (2.l4a), (2.l4c) combined with the finite 
value of p [x + (a7Tij2), a7TiI2] establish the existence 
-of finite values of the remaining two matrix elements 
in Eq. (3.4). 

We now proceed to demonstrate that in the limit 
x-+ +00, 

(
a1Ti a7Ti) ( a7Ti ) 

F21 2' x + 2 F21 X + 2' + 00 = 0, 

( a7Ti) (a1Ti a7Ti) 
F22 x + 2' + 00 = 1, F22 2' x + 2 
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is real and hence that 

22 ,00 - 22 ,x F (
aTTi + ) _ F (aTTi + a1Ti) 
222 

is real. Equations (2.17) establish that F21Fu is 
independent of the lower limit in Eq. (2.7). Hence we 
can choose any convenient point for this lower limit. 

Equations (2.6) and (2.14c) combine to give us the 
estimate for 

IF (a1Ti x + a1Ti) I 
21 2' 2 

S t[tf - 1] lexp [2i J:+(alTi)/2 q dx JI, (3.5) 

where the convergence of the ft integral and a con­
venient choice of p'guarantees the finitude of F21 • 

An estimate of !Ful cannot be arrived at so easily, 
however. Estimates (2.16b) must be employed, but 
first we must demonstrate that we can find an M and 
a w'. We can divide the path A. from x + (a1Ti/2) to 
+ 00 shown in Fig. 3 into two parts, x + (aTTi/2) to x, 
and x to + 00. Since leiW(x)1 increases monotonically 
from x to + 00 we can choose Ml = 1 and Wl(Z) = 
w(x) for this section of the path. If we can find an 
M2 which will satisfy (2.13a) for all w on the path 
from x + (am"/2) to x, we can choose as the M to be 
used in (2.16) the maximum of Ml and M 2 • Similarly 
if we find a w~ satisfying (2.15a) for the segment 
x + (a1Ti/2) to x, we choose as our w' the w~ or w~ for 
which le-iW1 / or le-iW21 is a maximum. That such 
finite M2 and w~ exist is evident from the fact that we 
are dealing with a finite line segment along which q, 
f q dz, and hence leiW(z)1 are all well-behaved with no 
singularities. This also guarantees the existence of 
finite F[x + (aTTi/2), x]. Our estimate for Fl2 [X + 
(am'/2) , + 00] is then 

IF12 (X + a;i, +00)1 

S 2~[exp (MIl(X + a;i, +(0)) - I] 
x /exp [ - 2i f' q dZ]I. (3.6) 

where w'(z) discussed above is written as S;' q dz. 
Combining (3.5) and (3.6), we have 

1 
(

aTTi aTTi) (aTTi )1 F21 2'x + 2 F12 2+ x, +00 

1 [ ((aTTi aTTi)) ] .:s;; 4M exp ft 2' x + 2 - 1 

x [exp (Mil (x + a;i , + 00) ) - 1 ] 

1 
( 

(x'+(a~;)/2 ) 1 
x exp 2i J., q dz . (3.7) 

In the limit of x -- + 00 everything is finite and 
ft [x + (a1Ti/2), + 00] -- 0 so that !FllFul -- 0 and our 
first contention has been shown to be correct. 

By an essentially identical argument, in fact we 
use the same M and Eqs. (2.6) and (2.14a) to obtain 

IF 22 (x + a ;i , + (0) - 11 

S 2~[exp (Mft(X + a;i, +(0)) - I} (3.8) 

and as x-- +00, Fzz[x + (a1T;/2), +00]--1. Thus 
we only have to show that F22[(aTTi/2), x + (aTTi/2)] is 
real and our proof will be complete. We first note that 
by (2.17) we are free to choose the lower limit of (2.7) 
anywhere we please. If we chose a point in region IV 
and consider only values of w in this region we find 
that 

(Z (x+(alr;)/2 

W = Jp q(z) dz = Jp i Iql dx. 

Hence wand dw are purely imaginary. Since €(q2, Q2) 
assumes real values we see that expression (2.18) is 
real and by the discussion accompanying (2.18) we 
can claim that F2Z [(a1Ti/2), x + (a1T;/2») is real. 

The same reasoning as employed above can also be 
used to prove that F2Z [(aTTi/2), - 00] is real. This 
establishes the validity of Bailey's quantization rule 
for the potential. 

Case V: 
2 

2 Q2 . 11' q = -
4a 2 sin2 (mla) 

2u + 1. 2 
= E + Vo _ a Yo 411'. (3.9) 

a2 sin2 (7TzJa) 

Before we begin analyzing this problem it is 
important to realize exactly what the physical situation 
is and what mathematical model we will be using to 
solve the problem. Physically we are dealing with a 
well-shaped cot2 potential whose walls are infinitely 
high at x = 0, x = a. We are not dealing with the 
periodic potential defined by letting x assume all 
real values. The boundary condition that this situation 
imposes on the Schrodinger equation is that 1p(0) = 
1p(a) = 0. Mathematically when we set up the problem 
in order to use the apparatus of the F-matrix approach, 
we consider the potential defined over the entire 
complex plane. In particular it will be periodic on the 
real axis. However, when we impose the boundary 
conditions on 1p(x), i.e., 1p(0) = 1p(a) = 0, the prob­
lem for the region of physical interest ° < x < a 
becomes mathematically identical to that of the infinite 
well. Thus the approach is justified. 
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FIG. 4. Branch cuts in the complex plane for Case V. 

Another consideration which arises for Case V, 
but was not necessary for Case IV, is the modification 
of the technique of Froman and Froman to deal with 
boundary conditions at x = 0 and x = a instead of 
at ± 00. These difficulties are analogous to those 
treated in Chap. 11 of Ref. 5, when the radial problem 
is discussed. The resolution of the problem for the 
case presently under study completely parallels the 
solution outlined in this chapter. We assume leiW(x) I 
increases monotonically to infinity as x goes to +a 
from x", or as x goes from x' to 0; the I' integral 
converges at 0 and a; and the phase of q is chosen 
properly. With these assumptions we are able to derive 
the analog of the one-dimensional and radial quanti­
zation conditions. In particular we have, 

i
X

• F22(Z, 0) (3 10) Iq(x)1 dx = (n + t)1T - arg .. 
x' F 22(Z, a) 

For the cot2 potential we can satisfy the above assump­
tions, and hence we can employ Eq. (3.10). In the 
following proof we choose z = iy and show that in the 
limit y ~ + 00, both F22(iy, 0) and F22(iy, a) are real. 
Fig. 4 indicates the complex plane for our problem. 

In Fig. 4 all angles to the left of and including point 
2 have the range -1T < ° < 1T, while those to the 
right of point 2 have the range of 0 <. ° < 21T. We 
find that the contributions from all the branch points 
other than 1, 2, 3, and 4 cancel each other out in 
groups of six for phases in regions I, II, and III. Thus, 
the contributions from points 5, 6, 8, and 9 is 21T, 
while that from 7 and 10 is -21T, and the total con­
tribution is O. In regions I, II, and III 

q = Iql ei8 exp [i{02 + 03 -22(01 + OJ}]. 

We now find that 00 = t1T so that in 

region I q = Iql e(i1r/2) exp [i e1T ~ 21T) ] = i Iql, 

region II q = Iql e(i1T/2) exp [i (1T -; 21T) ] = Iql, 

region III q = Iql e(i1r/2) exp [i (-~1T) ] = -i Iql. 

When we examine regions IV and V we see that only 
the branch points directly in each region contribute. 
~or region IV (01 + O2 + 03 + Os + Os + (7) = 0, 
while for region V (02 + 03 + 0, + Os + Og + (10) = 
o and all other phases from branch points cancel out 
in sextuplets. In 

region IV q = e(i1T/2)e-(1Ti/2)lql = Iql, 
region V q = e(i1T/2)e-(i1T/2)lql = Iql. 

With the above phases established for q we see that 
leiW(z) I increases monotonically as shown by the 
arrows in Fig. 5. 

We now turn our attention to the properties of the 
I' integral. From Eqs. (3.9) and (2.8), we have 

1T2 
E=----------------~---------------

In 

[4a2 sin2 (1TZ/a)][E + Yo - ( ~2~0 2+ t 1T
j

2
»)] 

a sm (1TZ a 

+ 4[E + V. ( a2Vo + t1T2 )] 
o - a2 sm2 (1Tzja) 

X {2(E + Vo)(3 - 2 sin2 :Z) 
- [ a2Vo + t1T2 J[1 + sin2 (1TZ ja)]}. (3.11) 

a2 sin2 (1TzJa) 

lim Eq~ 0 
z~o 

z~a 

so that ft(zo, z) is convergent as z approaches a pole 
of q2. For 

. I I 1 -2u Z = X + 'y, y ~ + 00, Eq oc -'-2- OC e 
smh y 

and hence the I' integral along a path A. such that 
y - + 00 for all points on the path, approaches O. 

We can now turn our attention to the quantity 
F2zCiy, 0)jF22(iy, a). From the above discussion con­
cerning leiW(z)l, the I' integral, and Eq. (2.12) 
F22(iy, 0) exists. On lines IV and V 

o 

w = Eq dz = iElql dy 

q=ilql q=lql q=-ilql 

X' " x 

q::;lql 

a 
FlO. 5. Monotonic behavior of leiW(Z)I. 
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i Y r---+---t~+--I--f-+---t~-I--........J i y+a 

o a 

FIG. 6. The path A used in evaluating F(iy, a). 

is pure imaginary for p on line V (or IV) so that w is 
pure imaginary. Hence F22 connecting any two points 
on either line (both points must be on the same line, 
IV or V) is pure real for the proper choice of p. Since 
F22 is independent of the lower limit of the integral in 
(2.7) we can state that F22(iy, 0) is real. 

By Eq. (2.5) with z = iy, Zl = iy + a, Zo = a; 
F22(iy, a) can be written 

F22(iy, a) = F21(iy, iy + a)F12(iy + a, a) 

+ F22(iy, iy + a)F22(iy + a, a), 

where our path connecting iy and a is shown in Fig. 6. 
The proof that F22(iy, a) is real closely resembles the 
proof that F22 [(hra/2), +00] is real. We will first 
show that !F21F121 --+ 0 for lim y --+ + 00 and then 
show that 

F22(iy, iy + a) --+ l. 

Clearly (2. 12b) is satisfied for F12(iy + a, a) and !F121 
is finite. Since the line connecting iy + a and iy is a 
finite segment along which w(z), fJ, and leiW(z)1 are all 
well-behaved, the arguments employed for Case IV 
can be applied here to show the existence of an M and 
and a w(z) such that Eq. (2.l6c) holds and 

1F21(iy, iy + a)1 S; 2~ [eM!' - 1] lexp [2iw'(iy + x')]1 

We then find that 

IF21(iy, iy + a)F12(iy + a, a)1 S; [eM!' - 1]C1, 

(3.12) 

where C1 is a finite constant. As we take the limit 
y --+ + 00 we find, since fJ, --+ 0 that I F21F12 I --+ o. 
Similarly we obtain an estimate for F22(iy, iy + a) by 

using (2.16d), 

IF22(iy, iy + a) - 11 S; [exp (MfJ,(iy, iy + a» - I]C2 , 

where C2 is a finite constant and thus 

lim F22(iy, iy + a) = l. 
y-+oo 

Our final result is that 

limF22(iy, a) = 0 + 1· F 22(iy + a, a) 
1/-+ 00 

= F 22(iy + a, a). (3.13) 

But F22(iy + a, a) is real for the same reason that 
F22(iy, 0) is real, and so F22(iy, a)/F22(iy, 0) is real 
and we have established an exact quantization con­
dition. 

Case VI: 

~2(~ + 1 )e-ar 

(1 - e-ar)2 
(3.14) 

This problem must be treated as a radial problem 
with r ~ O. The quantization condition for the radial 
problem is 

J,r"IQI dr = (n + t)1T _ arg F22(Z, +(0), (3.15) 
r' F22(Z, +0) 

we choose z = -Ixl + (1Ti/~) and take the limit as 
Ixl --+ 00. Poles of q2 in the complex plane occur 
whenever r = ±(2n1Ti/~) while the zeros are periodic 
with the same periodicity. In our standard notation 
and procedure we picture the complex z plane as 
shown in Fig. 7. 

Again as we have already seen, all branch points 
symmetric with respect to the lines y = 0, or y = 
(1Ti/~) make no contribution to the phase of q. The 
z plane for this potential bears a closer resemblance 
to that for the sech2 potential than for the cot2 poten­
tial, and indeed we must have eo = -t1T as in Case 

_______ ¥ ______ y= :i 

FIG. 7. Branch cuts in the complex plane for Case VI. 
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IV. The phase of q is now determined as follows: 

region I 

q = exp (- i;) exp [i(-217 +2 17 + 17) ] Iql 

= -ilql, 

region II 

q = exp (- i;) exp [i(-O +2
17 

+ 17) ] Iql 

= i iql, 
region III 

q = exp (- i;) exp [i(-O +2
0 + 17) ] Iql 

= Iql, 

region IV 

q = exp (- i;) exp [i C + ~ + 0) ] Iql 

= -ilql, 

region V 

q = exp (- i;) exp [i(O)] Iql = -i Iql. 

The directions in which leiW(Z)1 increases monotoni­
cally are indicated in Fig. 8. 

Now that the phase of q has been established we 
check to see if the properties of the fl integral are the 
desired ones. 

From Eqs. (2.8) and (3.14) we find that 

as r ---+ 0 so that fl is convergent when integrated over 
a region including the origin. We also find that IEql-+ 0 
exponentially, as fast as r - r + 00 so that we again 
have fl ---+ 0 over a path A which is entirely in a region 
of infinitely large Irl. 

With these preliminaries out of the way we are now 
able to outline the desired proof. In order to prove 
that F 22 [(i17/1X) - lxi, +00] is real we notice that the 
conditions are equivalent to that for Case IV when 
we proved that F22(i17a/2, + 00) was real. In fact our 
task is easier since there are no poles present on the 

FIG. 8. Monotonic behavior of leiW(ZII for Case VI. 

i3 
l[ vi 

-- ------------ --- ---Y=-a-

I , 01 n °
2

, =m: 

FIG. 9. Branch cuts in the complex plane for Case VII. 

path we now consider. To prove that F22 [-lxl + 
(i17/1X), 0] is real we essentially reproduce the proof 
used to show that F22{iy, a) was real in Case V. In the 
present situation the reality of F22 ( -lxi, 0) is 
established slightly differently, however, by making use 
of the proof that F22 [(i17a/2), (i17a/2) + xl is real for 
Case IV. 

Case VII: 

q2(Z) = Q2(z) = E - Ae- 2az 
- Be-az. (3.16) 

We notice that there are no poles in the finite z plane 
and that IEql ---+ e-1x1a as Ixl -+ 00 (z = x + iy). Hence 
fl(z, zo) -+ 0 for a path A with Ixl ---+ 00 for all z = 
x + iy on A. The zeros of q2 are periodic with 
periodicity 2n17i/a. Figure 9 is the branch point 
diagram for this problem. The convention on the 
range of angles is identical to Case IV, Fig. 2. In fact 
the situation here is totally analogous to that depicted 
in the latter diagram. 

We find that ()o is again -!17 and in 

region I q = i Iql, 
II q = Iql, 

III q = i Iql. 

Since line IV is symmetrically situated between the 
periodic zeros the phase contribution from the 
branch points is 0 and region IV q = -i Iql. The direc­
tion in which leiwi increases monotonically is shown 
in the diagram of Fig. 10. 

To prove that our quantization rule is exact we 
almost exactly reproduce the proof employed for 
Case IV. We choose as our z in the quantization 
condition (2.10) the point z = -Ixl + (i17/a) and 
must show that 

F22(-IX/ +;, +00) 
F22( -Ixl + i:, -00) 

is real. Because of the similarity in phase of q for line 
IV Fig. 9 and line IV Fig. 2 the proof that F22 [(i17a/2), 
+ 00] is real can be exactly reproduced to establish 
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X' x" 
FIG. 10. Monotonic behavior of le/W(')I for Case VII. 

that 

F22( -Ixl + i;, +(0) 
is real. Again the task is made easier, since it is clear 
that all elements considered exist. It will be recalled 
that in order to prove that F22 [(i1ra/2), - 00] was real 
in Case IV it was necessary to prove that 

F22( -Ixl + i~a, -(0) 
was equal to 1 in lim x ---+ 00. This proof also serves to 
prove that 

F22( -Ixl + i;, -(0), 
for the situation considered, is equal to 1. Hence 

F22 (-IXI + i7T , + (0) 
r a 

'"~~ F22( -Ixl + i:, -(0) 
= F22( -Ixl + i;, +(0) 

and 

F22( -Ixl + i;, +(0) 
is real. The exact quantization condition for a modified 
Morse oscillator has now been proved. 

Case VIII: 

q2(X) = Q2(X) = E - Ae2za - Be-2za. (3.17) 

If we locate the zeros of q2 we find that they are 
periodic with a periodicity of ± (n7Ti/a) in the complex 
plane. Since q2 has no poles in the z plane the branch­
point diagram for this case bears an extremely striking 
resemblance to Fig. 9. However, now there are twice 
as many zeros and instead of choosing line IV to be 
y = 7Ti/a we choose y = 7Ti/2a. Since leql- e-a1xl as 
x - ± 00 the proof that quantization condition (2.3) 
is exact for Case VIn is identical to that of Case VII. 

In order to provide an independent check on the 
validity of the exact quantization condition for Case 
VIII a numerical integration was performed of the 
quantization integral. The problem was made dimen­
sionless by choosing [ha/(2mA)!] = 1. The special 
case of A = B (this corresponds to a sinh2 potential) 
was chosen and the energy value which satisfied the 
quantization equation for the ground state (n = 0) 
was found to be 2.32. The ground state, it is well 
known, provides the most severe test of the WKB 
quantization condition since for nonexact conditions 
the WKB eigenvalue is markedly different than the 
true eigenvalue for this state, even if the two types of 
energy values agree closely for excited states.! To 
check this value of E a numerical integration of 
Schrodinger's equation was performed. The procedure 
we employed was to find an E for which the corre­
sponding wavefunction closely approached the x axis 
and then began to blow up rapidly, without ever having 
actually crossed the axis. We then found a value for 
the energy for which the wavefunction crossed the 
axis before it diverged. The true eigenvalue must lie 
between these two values of E, and our value of (2.32) 
has this property. The result then, confirms the 
validity of the exactness of our quantization condition. 

We have now completed our proof that all the 
potentials listed in Table 1 have as an exact quantiza­
tion condition Eq. (2.3). 
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The total energy, momentum, supermomentum, and angular momentum of asymptotically flat space­
times are calculated in terms of coordinate and conformally invariant expressions by taking the limit in an 
invariant way of the asymptotic symmetry linkages through a sequence of finite closed two-spaces which 
converge to a sphere at null infinity. The resulting expressions consist of integrals over the sphere at null 
infinity of cordinate and conformally invariant quantities. In the case of energy and momentum these 
integrals may be reduced to expressions previously proposed by Penrose. 

1. INTRODUCTION 

The importance of the Poincare group is that it 
manifests the full group of motions leaving the 
Minkowski metric of special relativity invariant. 
Because these motions constitute a preferred group of 
symmetry transformations, their generators, energy, 
momentum, and angular momentum assume special 
significance. The infinitesimal motions of the Poincare 
group are usually presented as infinitesimal trans­
formations 

y'a = ya + .;aE + O( (2) 

which leave invariant the Minkowski metric 

so that 

and 

(~1 0 ~ ~) 
o 010 ' 

000 1 

Y,a y'b '¥lcd = ab 
,c ,d" 'Yj 

(Ll) 

(1.2) 

The ten linearly independent solutions ';Qu ofEg. (1.2) 
constitute descriptors of infinitesimal Poincare trans­
formations. An observer referring to a particular 
Minkowski coordinate system l ya associates the ten 
values of the label Q with his coordinate axes. Four 
descriptors with Q = a (a = 0, ... , 3) are associated 
with infinitesimal translations along the four coordi­
nate axes ya. Six descriptors with bivector labels 
Q = [ab] are associated with infinitesimal Lorentz 
rotations in the [ya, yb] plane. Observers referring to 
other Minkowski coordinate systems make the same 
canonical labeling of the descriptors with respect to 
their own coordinate axes. We write ';Q,a

H 

(y") to denote 
the descriptor of the Q transformation associated with 
the y' Minkowski frame and expressed in terms of 

1 In a Minkowski coordinate system the metric has the form (1.1). 

some other y" coordinate system. Here the y" coordi­
nate system is arbitrary. Indeed, we need not even 
restrict ourselves to Minkowski frames. The descrip­
tors transform as vectors, so that under the curvilinear 
coordinate transformation x" = x"(y") we have 

';Q'''(X) = x",aH';Q,aH(y"). 

Under such a transformation the Minkowski metric 
is no longer invariant and transforms into 

g"V(x) = x",aHXv,bH'Yjab. 

Consequently, Eq. (1.2) does not hold in curvilinear 
frames, but as is well known its covariant form 

2';Q(Il;V) = g,,{3';Qv,/l + gV/l';QIl,/l - g"v,/l';/ = 0 (1.3) 

is applicable. Equation (1.3) gives a general covariant 
meaning to the concept of a motion or symmetry of 
Minkowski space. 

Let y and y' denote two Minkowski frames which 
differ infinitesimally, 2 

(1.4) 

Then in any coordinate system, the descriptors ';Q"(x) 
and ';Q,I'(x) associated with these two Minkowski 
frames are related to first order 

';Q,Il(x) == ';Q"(x) + CpQR';R"(X)€.P, (1.5) 

where the C PQ R are the structure constants of the 
Poincare group, Suppose some linear functional L 
acts on the descriptors such that 

LQ == L[';QIl] 

is a scalar under curvilinear coordinate transforma­
tions. For example, if a is a spacelike hypersurface 
and T,/ the energy-momentum tensor of some field 
then the scalar linear functional 

2 Sum over the repeated index Q. 
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describes the total energy, momentum, and angular 
momentum of a. From Eq. (1.5) we then have 

(1.6) 

Equation (1.6) describes the transformation of the 
LQ induced by a transformation of the parameter 
space of the Poincare group. Physically, this trans­
formation law relates how the scalars LQ are inter­
preted by observers referring to different Minkowski 
frames. 

The foregoing discussion of the symmetries of 
Minkowski space while offering nothing new or 
original provides a familiar basis for understanding 
some recent results concerning symmetries in general 
relativity.3-9 In a curved space global symmetries 
satisfying Eq. (1.3) do not in general exist. For 
asymptotically flat spaces there are, however, asymp­
totic symmetries which satisfy Eq. (1.3) at null 
infinity (in the limit of infinite luminosity distances 
along null hypersurfaces). Penrose6

•
7 has devised a 

technique for studying null infinity in a covariant 
manner. He constructs a manifold conformal to the 
physical manifold in which null infinity J is a regular 
hypersurface consisting of two disjoint regions, future 
mill infinity J+ and past null infinity J-, each having 
topology S2 X £1. The possibility of such a construc­
tion is tantamount to the necessary conditions for 
space to be asymptotically flat. In this formalism, the 
physical-space metric now denoted by gllv is related to 
the metric gllv of the conformal manifold by 

(1.7) 

where Q = 0 at J. Asymptotic symmetries can then 
be defined in terms of conformal motion's of J.4-9 This 
leads to the Bondi-Metzner-Sachs (BMS) asymptotic 
symmetry group. There is obviously a double-valued 
nature to this group with respect to symmetries of both 
J+ and J-. We will not delve into this subject here and 
. will restrict ourselves to considering symmetries of 
J+. These may be expressed as infinitesimal conformal 
motions 

satisfying 

3 H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc. 
Roy. Soc. (London) A269, 21 (1962). 

• R. K. Sachs, Phys. Rev. 128,2851 (1962). 
• R. K. Sachs, in Relativity, Groups, and Topology (Gordon and 

Breach, Science Publishers, Inc., New York, 1964), p. 523. 
• R. Penrose, Phys. Rev. Letters 10, 66 (1963). 
7 R. Penrose, in Relativity, Groups, and Topology (Gordon and 

Breach, Science Publishers, Inc., New York, 1964), p. 565. 
8 J. Winicour and L. Tamburino, Phys. Rev. Letters 15, 601 

(1965). 
• L. Tamburino and J. Winicour, Phys. Rev. 150, 1039 (1966). 

where O(J+) indicates terms which vanish on J+. The 
transformations such that 

(1.9) 

form an invariant subgroup. Their factor group is the 
BMS group.9 Unlike the Minkowski-space solutions 
of Eq. (1.3), BMS descriptors satisfying Eg. (1.6) are 
defined only to within terms of the type indicated in 
Eq. (1.9). Given a null hypersurface r, however, a 
projection of Eq. (1.3) into r uniquely propagates 
BMS descriptors along r in terms of their values on 
the sphere I:+ in which r intersects J+.8.9 In terms of 

covariant derivatives V Il with respect to the physical­
space metric, this propagation law takes the form 

[k;V(ve) - !kIlVv~V]r = 0, (LlO) 

where kp. is the null normal to r. We can thus avoid 
the lack of uniqueness expressed by Eq. (1.9) by 
restricting our investigations to a single null hyper­
surface r and imposing the propagation law Eg. (1.10). 
F or the remainder of the present paper this will be 
done. We deal only with a single null hypersurface r. 

There are an infinite number of linearly independent 
descriptors ~Qp. which satisfy Eg. (1.8) onJ+ and Eq. 
(LlO) on r. In the identical way that we have used 
Minkowski-coordinate systems to canonically label 
the descriptors of the Poincare group, Sachs4 has used 
null polar-coordinate systems on J+ to canonically 
label the descriptors of the BMS group. Ten BMS 
descriptors are given labels Q = a and Q = [ab] 
analogous to the descriptors of the Poincare group. 
The remaining BMS descriptors correspond to what 
have been called supertransiations4 and are given the 
spherical-harmonic labels Q = (1m) with I ~ 2. Just 
as observers referring to different Minkowski frames 
make the same canonical labeling of the Poincare 
descriptors but with respect to their own coordinate 
axes, observers at null infinity referring to different 
(but isometric) null polar-coordinate systems on J+ 
make the same canonical labeling of BMS descriptors 
but with respect to their own axes. In analogy with 
Eq. (1.5), BMS descriptors ~Qp. and ~Q'p. satisfying Eq. 
(LlO) which are associated with two infinitesimally 
differing null polar-coordinate systems on J+, 

y,a = ya + ~pa€P + O(E2) , 

are related on r by 

~Q'p.(x) = ~Qp.(x) + CPQR~r!'(X)€p, (1.11) 

where the C pQR are now the structure constants of the 
BMS group.9 

Let fill be any vector field on r such that 

(1.12) 
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Then the scalar linear functional 

LQ(:S) = £ (V[V~Q/ll - k[/ljivlVp~/J) dS/lv (1.13) 

is defined for each finite closed two-space r, lying on 
r.8 •9 Furthermore, this functional is independent of the 
choice of ji/l subject to Eq. (1.1 2). Corresponding to 
different values Q, this functional has been called the 
energy-momentum, angular-momentum, and super­
momentum linkage through :S.8.9 Under the trans­
formation of Eq. (Lll), these linkages transform as 
an adjoint representation of the BMS group, 

(1.14) 

This transformation law has the same physical inter­
pretation (with respect to observers at null infinity) 
as Eq. (1.6). The most important feature of Eq. (1.14) 
is that the structure of the BMS group allows the 
identification of the energy-momentum linkage up to 
a Lorentz rotation. 

In terms of a limiting process, the functional 
LQ(r,+) is also well defined.8 •9 It yields the proper 
value for the total mass of an asymptotically flat 
space, as defined by Bondi et aP In Ref. 9, the limit 
LQ(r,+) was explicitly calculated in terms of a con­
formal Bondi coordinate system. The purpose of this 
paper is to calculate the limit in a covariant manner 
and to present LQ(r,+) as an integral over r,+ of 
coordinate and conformalIy invariant quantities. We 
strictly adhere to the notation of Ref. 9. 

2. CONFORMAL SPACE FORMULAS 

Equation (1.7) defines a conformal-space metric 
which is regular at J+. The conformal factor £l is also 
regular at J+ and is subject to the conditions6.7 

£l = O(J+), £l.
1t 

¥:- o (J+). (2.1) 

In terms of conformal-space quantities, the vacuum 
Einstein equations are 

where 
£l2SltV - 200;ltv + gltvO;PO;/J = 0, (2.2) 

(2.3) 

These equations and the topology of J+ imply6.7 

and 

R/lV = R~/lva' 

We assign the conformal-transformation properties 

k = k, ji/l = nil /l /l 
(2.8) 

so as to preserve the normalization given in Eq. (Ll2). 
The extensions of k/l and nil are further restricted so 
that these vectors are regular at r,+. The surface 
element transforms into 

(2.9) 

The propagation law along r prescribed in Eq. (LlO) 
becomes 

~(/l;v) kv = EP;pk/l - o-lO;pek/l. (2.10) 

We immediately have the regularity condition 

o;pe = 0(1+), (2.11) 

which states that asymptotically the descriptors must 
point along J+. Finally, the linkage expression Eq. 
(1.13) becomes 

Lg(:S) = £ 0-3AItV dS/l v , (2.12) 

where 

A/lV = O~[It;vl _ 2~[Il£l;vl _ £l~P;fJk[llnvl 

+ 4~p£l;pk[ltnvl. (2.13) 

Equations (2.12) and (2.13) imply that the limit 
L,;(r,+) is an integral of an indefinite form. In Ref. 9, 
however, it was proved that 

(£l-3AItV);vkll = OCr). 

With the help of the generalized Gauss theorem, this 
was then used to show that the limit 

L,;(r,+) == lim L,;(:S) 
1;-+1;+ 

exists and is furthermore independent of the choice 
of closed two-spaces r, which converge to :s+ along 
r. We choose the particular family :S(O) given by the 
intersections with r of the hyper surfaces 0 = const. 

The family r,(£l) defines a null tetrad on r (uniquely 
to within choice of extensions) by the equations 

(2.14) 
with 

£l;pO;p = OCr), 

O;/lV - igltvO;Pp = O(J+), 

(2.4) and 

(2.5) 
where 

(2.15) 

(2.16) 
and 

(2.6) 

where our conventions for relating the Weyl, Rie­
mann, and Ricci tensors are 

C/l~pV = R/l~Pv + gP[ItS~lv + g\,[~SltlP (2.7) 

A == -O;/lk/l. 

The usual orthonormality conditions follow: 

k/lkll = k/lt/l = m/lmll = m/ltll = t/lt/l = 0, 

(2.17) 

-k/lm/l = till = 1. (2.18) 
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We rewrite the surface element on ~(.Q) as to prove 

dS".v = k[".m v] dS, (2.19) 
where 

dS = -2k["'m v] dS". •. (2.20) and then performing a tetrad expansion. 

Equations (2.12) and (2.13) then give 

Lg(~+) = lim .0-3 1 AdS, 
n-o Jl:(ll) 

(2.21) 

where 

A = -fU",;vm".kv + Q~"';Vt(/.,j - 3~"'O;/l 

- A-l~"'k".Q;v.Q;.. (2.22) 

From this it is clear that L§(~) involves derivatives of 
~". only in directions lying in r. 

In evaluating Eq. (2.21) we will use the following 
two formulas: 

~ 1 B dS = 1 [8 vP + 2p8];'-1 dS, (2.23) 
dO Jl:(!I) Jl:(!I) , 

1 [8/1;Vt(".iv) + pB"'m". + ma;/i"1PlBl'k/1] dS = 0, 
~(!I) 

(2.24) 
where p measures the divergence of r: 

- k t(l't- v) p = ,,;. . (2.25) 

These equations are applications of the generalized 
Gauss theorem in a four-dimensional manifold 

i B[a" '1'.] dS 
~v a· .. Il 

R 

= (4 - n)-11 B[Cl···P.'] dSa .. '/1V' 
JaR 

dO = Q;v dnxv. 

Performing a tetrad expansion then gives Eq. (2.23). 
Equation (2.24) is a generalization of the theorem that 
the integral of a curl over a closed two-dimensional 
surface vanishes. It follows from first applying the 
topological equation 

a~(O) = ° 

3. CALCULATION OF THE LIMIT 

To evaluate the limit Lg(~+) we introduce a 
conformal frame which simplifies the description of ~ 
and r. There are two motivations for this. One is 
calculational ease. The other is the gained simplicity 
in recognizing the conformal invariance of the inte­
grand appearing in the limit. The reason that intro­
ducing a special conformal frame is useful in this 
latter respect is that the initial integrand A is not 
conformally invariant. Furthermore, the use of Eqs. 
(2.23) and (2.24) in the limiting process introduces 
factors of p which also is not a conformal invariant. 
Consequently, it is helpful to transform away as many 
nonconformaIIy invariant terms as possible. The 
justification for this procedure is given in the next 
section by showing that the surviving terms can be 
interpreted as conformal invariants. 

We set 
p = 0, (3.1) 

by choosing a conformal factor satisfying 

Qj(v= _Qp 

along r. This defines .0-1 to be a luminosity distance 
along r.5 Furthermore, we use the angular freedom 
in the choice of inverse luminosity distance to set 

A = 1 + O(~+). (3.2) 

This fixes n on r. To complete the specification of Q 

we choose the hypersurfaces n = const to be the 
family of incoming null hypersurfaces intersecting r 
in ~(n), so that 

(3.3) 

In addition, we use the freedom in the extension of 
kl' and the hypersurface orthogonality of k/1 to demand 

(3.4) 

In the next section we will show that our results do not 
depend upon this special choice of kl" 

Even with the above simplifications, our calculation 
is still tedious. Taking the tetrad components of the 
propagation law Eq. (2.10) gives 

e;·k/1kv = 0, 

~(/1;v) k/1t. = 0, 

n~Pt(/v) = n;fJ~fJ. 

(3.5) 

(3.6) 

(3.7) 
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Combining Eqs. (2.22), (3.3), and (3.7) then gives 

A = nB, (3.8) 
where 

B = -).-l~";vn;,,kv - U";Vt(,.iv)' (3.9) 

From Eqs. (3.7), (3.3), and (2.3), we have 

~";vn;,,kv = -).~";Vt(,.fv) - tns"vk"~v 

+ n[~,,;(Jt{ip)lvkv, 
and from Eqs. (2.24), (3.1), (2.15), (2.16), (3.3), and 
(2.3), we have 

~";Vt(,.fv) = -tn).-l~"k"S,,(JtlZi(J + C, 

where C denotes terms whose integral over ~(n) 
vanishes because of the curl theorem, Eq. (2.24). 
Combining these results with Eq. (3.9) gives 

B = nD + C, (3.10) 
where 

D = t).-lS"vk"~v + t).-l~"k"SIZ(JtlZi(J 
- ).-l[~IZ;Pt(ip)Lkv. (3.11) 

Using Eqs. (2.18), (3.5), and (3.6), we find 

[t(i(J)Lkv~IZ;P = o. 
From Eqs. (2.2) and (3.3), we have 

n;"s"v == O. 

Using Eqs. (3.12) and (2.3) gives 

S"vk"~v + ~"k"Sa(lzi(J = R"vk"~v. 

(3.12) 

Combining these results with Eq. (3.11) then gives 

D = _).-l~a;(Jvt(ilJ)kv + t).-lR"vk"~v. (3.13) 

From the Ricci identities, we have 

).-l~%;(JVt(i(J)kv = ).-l~"R"a(Jvt(ai(J)kv + ).-l~a;vPt(aip)kv' 
Using Eqs. (2.7), (2.24), (3.1), and (3.5) then gives 

).-l~";flvt(aip)kv 

= ).-l~"c"aPvt("ip)kv - i).-l~at(aip)RPvkv 

+ i).-l~/lR"Vkv - ~a;Vt(aip)().-lkvYp + C, 

where C denotes additional curl terms whose integral 
over ~(n) vanishes. Combining this with Eq. (3.13) 
gives 

D = -).-l~"c"a(Jvt(aip)kv + V-l~at(aifl)Rflvkv 
+ ~a;vt(ai(J)().-lkvYp + C. (3.14) 

Next from Eqs. (2.17), (2.18), (2.16), (3.3), (2.2), and 
(3.1), we find 

represents the shear of r. Combining these results with 
Eqs. (3.14), (3.10), (3.8), and (2.21) gives 

LP:+) = lim n-1 i E dS, (3.16) 
0-+0 Yt(m 

where 

E = Re [-;"-l~p.Cp.IZ(JVtlZi(Jkv + t;"-l~"tIZR(Jvi(Jkv 
+ ).-la~IZ;(Ji"ip + tn).-2~IZ;VtlZkvR,,(Jipkp], (3.17) 

or by Eq. (2.23) 

Ls(~+) = i G dS, (3.18) 
j1:+ 

where 

G = E,vkv. 

Using the asymptotic properties indicated in Eqs. 
(2.6), (1.8), and (3.2) gives 

G = Re [-~YC/Pv;PtlZi(Jkvkp + a(~IZ;(Jii(J);vkV 
+ HlZtlZi(JR(Jv;Pkvkp] + O(~+). (3.19) 

We must re-express the last term in this result before 
establishing its conformal invariance. Applying the 
Bianchi identities to Eq. (2.7) gives 

(3.20) 

Taking tetrad components and using Eq. (2.6) then 
gives 

CpvlZ(J;ykP{VilZtPkY = Rp[«;v]kPtlZkV + O(~+). (3.21) 

Next, using the Ricci identities and a tetrad expansion 
gives 

RIZP;Pk k i = (RaPk k );Pi - 2RIZ(Jk k i P 
IZ P P IZ P /l IZ (J;p 

= 2(aa);,.fP - 2aR IZ(Jk"t(J + O(~+). (3.22) 
Similarly, 

RIZPk tp = -k";P t = -(klZ;Pt) + k";Pt 
IZ " (J P ;a P;IZ 

= (k";PQ. tpk1). - (aP). + at . (lZf(J + O(~+) ,1Z,1 ,1 ",(J 
= - n;IZP1k"tPkY - aj1 + 2at,,;p f"f(J + O(~+) 
= tRIZPk"t(J - aj1 + 2atlZ ;(Jf,,{(J + O(~+), 

so that 

R"PklZt(J = -2a;af" + 4at,,;pflZiP + O(~+). (3.23) 

Combining Eqs. (3.18)-(3.23), we now have 

Ls(~+) = Re i ).-2{3 + ~Pk/1> :h+ 
+ et,,[2'Y + (ajj);aflZ + 2jj(j;i rt 

- 4i'aa - 4).-laa).;a{lZ]) dS, (3.24) 
~";Vt("tli)().-lk.);P where 

= Re [tn).-2~a;vt"ipR/k"kv + ).-la~a;Piaip], 
where Re indicates the real part, and 

a == k,,;vt"tV (3.15) 

3 = a(~";P i"ip);vkV, 

<D = C"IZ(Jv;Y m t i k k 
" a P v l' 

'Y = CPIZPV;Yt f f k k 
" "P v Y' 

(3.25) 

(3.26) 

(3.27) 
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and 

(3.28) 

In the special conformal frame being used in this 
section, we may set A = 1 and A;,Jp. = 0 in Eq. (3.24). 
These terms have been explicitly introduced for 
future reference when considering the conformal 
invariance of Eq. (3.24). 

It is also useful to express Ls(~+) in a form in which 
derivatives of the descriptor field do not appear. To 
do this we apply the curl theorem, Eq. (2.24), to the 
first term in Eq. (3.24). We have 

8 = a~P.R/3vf(1.fpkv + a~~;vPf(1.kJp + O(~+) 
= !a(~P.kp.R~Pfa.fp - ~P.fp.Ra.Pf(1.kp) 

+ 2al:~;vPf k· f t f/l + O(~+) 
" ~ v (P /l) 

= -ta(2~/lkp.Q;~PYf(1.fpky + ~/lf/lRaPf(1.kp) 
- 2~a;vf(ptp.)(afakJ/lrp + O(~+) + C 

= -!a[UP.kp.(Q;aPf~fp);ykY + ~P.fp.R~Pfa.kp] 
- ~a.;vfa.kvC a;pfP - 21'a) 

- ~a.;vf[a.tvlaa + O(~+) + C 

::::: -!a[U/lk/l(Q;"Pf"fp);ykY + ~/lfp.R"Pf"kp] 
- ; "f.t/l [k,,[/l( a;pfP - 21'a)rv 

- ~";vf["tvlaa + O(~+) + C 
- _ /:/lk [ (n;"p - -) kY ( -P _ 2- ) -" - s- /l a~.: t"tp;y + a;pt Ta ;"t 

- 1'(a;pfP - 21'a)] - ~";vf["tvlaa 

+ H~~t"aR/lvk/ltV - ~"f"aRp.vk/lfV) + O(~+) + C, 

so that 

Re i ),-28 dS 
t:+ 

= -Re! A-2ek/l[i,-1(Na - Paa) 
jI:+ 

+ (a;pfP - 21'a - A -laA;pfP);"f" - (1' + A-IA;"f") 

X (a;(JfP - 21'a - ;'-laA;pfP)] dS, (3.29) 

where 
N = (Q;"Pf/p);ykY, 

P = if}"", 

(3.30) 

(3.31) 

and where we may set), = 1, A;,J/l = 0 and P = 0 in 
the special conformal frame being used in this section. 
Combining Eqs. (3.24) and (3.29) now gives the 
desired form: 

Ls(~+) = Re! ),-2{ -~P.k/l[A-\Na - Paa) - <l> 
j1:+ 

+ (a;pffJ - 21'a - A-1aA;pffJ);"f" 

- (1' + J,.-lJ,.;"f")(a;pfP - 2fa - J,.-\rJ,.;pfP)] 

4. CONFORMAL INV ARIANCE 

To establish the conformal invariance of our 
expressions for Ls(~+) we first show that these 
expressions are invariant under the tetrad transforma­
tion 

k~ = Akp.' m~ = A-Imp. (4.1) 

which changes the extensions of the null tetrad vectors 
k/l and mil while maintaining their normalization. 
The tetrad vector mp' appears in Ls(~+) only through 
the surface element dS defined in Eq. (2.20). We have 

dS' = dS. 

The shear transforms into 

a' = Aa 

and A transforms into 

A' = AI.. 

Using these results, it is easy to show that, because of 
our insertion of factors of A, both Eq. (3.24) and Eq. 
(3.32) are invariant under the tetrad transformation 
of Eq. (4.1). Thus these expressions for Ls(~+) do not 
depend upon the special form of k/l assumed in Eq. 
(3.4). Consequently, it is convenient to fix the ex­
tension of k/l so that 

A = 1 + O(~+). 
Equations (3.24) and (3.32) then simplify to 

Ls(~+) = Re! {8 + ;/lkp<l> :k 

(4.2) 

+ etp.[2'¥ + (aa);/" + 2aa;a.f" - 41'na]) dS 

(4.3) 
and 

Lg(~+) = Re! {-ek/l[Na - Paa - <l> 
JI:+ 

+ (a;pfP - 21'n);"f"- 1'(a;(JfP- 21'n)] 

+ ~/ltA2'¥ + (aa);"f" + 2aa;"f"- 41'aO'J) dS. 

(4.4) 
Under the conformal transformation 

we have 

k~ =jkp., and m~ =jm/l. 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

+ ~P.t/l[2'¥ + (aa);,,£" + 2aa;"f" 

- 41'aa - 4J,.-laaA;af"J) d S. 

The requirement that Eq. (4.2) be conformally in­
(3.32) variant determines the conformal weights assigned in 
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Eq. (4.8). Using Eqs. (4.5)-(4.8), we then find 

{O;aP}' = fO;a/l + 0fa/l - 20f-1faf/l 

+ gap(Of-Y:yPY + fyO;Y), f4.9) 

N' = f-2N - f-'1.aprfP + 2f-'1.i'J..pfP + O(~+), 
(4.10) 

P' = f-1 P + (-'1pD.;p + O(~+), (4.11) 

a' = f-1a, C 4.12) 

f' = f-1 f - f-2fJv, (4.13) 

S' = 1-23, (4.14) 

<1>' = f-3<1> + O(~+), (4.15) 

'1" = f- 3'Y + O(~+), (4.16) 
and 

dS' =f2 dS. (4.17) 

By a straightforward insertion of these results into 
Eqs. (4.3) and (4.4), we readily find that L~(~+) is 
conformally invariant; i.e., 

{Lg(~+)}' = Lg(~+). 

5. CONCLUDING RESULTS 

We'may appreciably simplify our expressions for 
Lg(~+) by introducing a covariant form of the angular­
differential operator which Newman and Penrose10 

have denoted by O. A scalar 'f} constructed out of 
tetrad vectors is said to be of spin weight s if under the 
spatial rotation of tetrad vectors 

(5.1) 
'f} transforms into 

(5.2) 

For instance, a is of spin weight 2, a is of spin weight 
- 2, and aa is of spin weight O. If'YJ is of spin weight s 
we then define 

O'YJ == 'YJ;/lt/l + sT'Yj, (5.3a) 

{)'YJ == 'YJ;/lf/l - sf'YJ. (5.3b) 

(The definition of 0 given in Ref. 10 is actually .J2 
times the difinition used here.) Note that 

(O'f}) = 51j. 

If 'YJ is of spin weight s, then o'YJ is of spin weight s + 1 
and tJ'f} is of spin weight s - 1. Thus 

58'YJ = (5'f});/1' - (s - l}7'fl'YJ, 

and in particular 

l)5a = (a;/lf/l- 2fa);yfY - f(a;/lfP - 27'a). (5.4) 

'0 E. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966). 

Using these results, we may rewrite Eqs. (4.3) and 
(4.4) as 

Lg(~+) = Re i {E + ~/lkl'<I> rr+ 
+ ~/lt/l(2'Y + 5(aa) + 2a{)a]} dS (5.5) 

and 

Lg(~+) = Re l {-~/lk/l[Na - Paa - <I> + 52 a] 
Jr+ 
+ ~/lt/l[2'Y + 5(aa) + 2a5a]} dS. (5.6) 

Penrose,6.7 in his development of the conformal 
approach to null infinity, found it convenient to 
introduce a particular choice of conformal factor which 
maps the inner geometry of ~+ into that of a unit 
sphere. In addition, he specified the behavior of this 
conformal factor along the null directions on J+ by 
requiring P = O(J+). From Eq. (4.11) we see that 
this is always possible. These two conformal condi­
tions completely determine 0 on J+; i.e., the remaining 
conformal freedom in Eq. (4.5) is of the form f = 
1 + o (J+). From the results of the previous section 
we know that Eqs. (5.5) and (5.6) are form invariant 
under a transformation to this special conformal 
gauge. From the construction of this gauge, however, 
we may put P = 0 in Eq. (5.6). In addition, for the 
four translational descriptors we have ~/t/l = 0 and 
~a"kl' contains angular dependence only of the type 
desc,ribed by spherical harmonics with I $; 1.4.9 But 
82a contains angular dependence only of the type 
described by spherical harmonics with I ~ 2,l0 Hence, 
by the orthonormality of the spherical harmonics, we 
have 

(5.7) 

This argument based upon the usual spherical co­
ordinates (fJ, cp) can be justified because of our special 
choice of conformal guage. Since each term in Eq. 
(5.6) is individually invariant under coordinate 
transformation we may transform into a (fJ, cp) 
coordinate system on the unit sphere ~+ to carry out 
the above proof of Eq. (5.7). In this special conformal 
frame Eq. (5.6) then gives for the total energy­
momentum 

PaC~+) == Lg.O:+) = -Re £+~a"k/l(Na - <1» dS. 

(5.8) 

This is exactly the expression for the total energy­
momentum initially proposed by Penrose6 •7 from 
quite a different point of view. 
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Electric-Field Penetration into a Plasma with a 
Fractionally Accommodating Boundary 
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Landau's field penetration study is extended to a plasma with a boundary that reflects a fraction 11 of 
the incident electrons specularly and the remainder diffusely. Exact solutions for specular and diffuse 
reflection, and series solutions for fractional accommodation are obtained. At great depths in the plasma 
the field is found to exhibit negligible 11 dependence for w near Wp and weak dependence through a 
factor (1 + 11) at other frequencies. 

I. INTRODUCTION 

The second half of Landau's paperl on plasma 
oscillations was concerned with the penetration of an 
external, oscillating, longitudinal electric field into 
a semi-infinite plasma. It was assumed that the plasma 
ions formed a uniform, smeared-out charge back­
ground and that the plasma was confined by a specularly 
reflecting boundary. This paper examines the law of 
field penetration in the more general case: A fraction a 
of the electrons striking the boundary reflect specu­
larly, while the remainder come off diffusely with a 
Maxwellian distribution at the background plasma 
temperature. 

Landau's original treatment has been clarified and 
extended by many workers. 2- 8 With insight gained 
from these studies and our own recent investigation 
of sound propagation forced by a fractionally accom­
modating piston,9 our approach is to convert the 
physical field penetration problem to an equivalent 
full-space problem which we solve with the aid of half­
range Fourier transforms. We rederive Landau's 
result in the specular limit (a = 1) and use the 
Wiener-Hopf technique to find the solution for the 
diffuse limit (a = 0). For the electric field at large 
distances from the boundary we develop an asymp­
totic solution exhibiting, in general, only a weak a 
dependence. Finally, for arbitrary a we develop 
formally exact series solutions to the problem by 
iterating our specular and diffuse results. 

• Present address: Bell Telephone Laboratories, Whippany, New 

II. FORMULATION 

We replace the given, semi-infinite plasma with an 
equivalent plasma filling the full space and divided at 
x = 0 by a plane conducting boundary. This is 
insulated from the medium and reflects electrons with 
fractional accommodation. An oscillating external 
charge is applied to the boundary so as to create at 
x = ()± the fields ±Eoe-i(J}t, which by assumption then 
penetrate the entire plasma in accordance with 
Poisson's equation and the linearized Vlasov equation: 

oEjox = -47Ten l (x, t), nl = L+ooa;> gl(U, x, t) du, (1) 

Ogl/Ot + U(Ogl/OX) - enoE(x, t) (og%u) = 0, 
m 

go(u) = e-,,2/2ao2/(27T)iao. 
(2) 

Our aim is to find E(x > 0). The exponential time 
dependence is assumed throughout. We define the 
half-range Fourier transforms 

g+(u, k) = fooo gl(U, x)e-ikX dx, 

LX) a:; e-ikX dx = ikg+ - gl(U, 0+), 

E+ = LOO E(x)e-ikX dx, 

(a;> oE e-ikX dx = ikE+ _ E(O+), 
Jo ox 

(3) 

(4) 

Jersey. while "minus transforms" are obtained from corre-
1 L. Landau, J. Phys. (USSR) 10, 25 (1946). 
2 R. Gould, Phys. Rev. 136, A991 (1964). sponding integrals over the range x < O. Thepresence 
8 M. Feix, Phys. Letters 9,123 (1964). f (·k ). th "I t f, ". pre th t 
• F. Shure, Ph.D. thesis, University of Michigan (1963). 0 exp -I X m e pUs rans orms 1m I s a 
5 R.E.AamodtandK.M.Case, Ann. Phys.(N.Y.)Zl,284(1963). these functions are nonanalytic in 1m (k) > 0- and 
• v. Silin, Sov. Phys.-JETP 13, 430 (1961) . f II I t· .. I (k) < 0 S· ·1 I II th 
7 v. Kurilko, Sov. Phys.-Tech. Phys. 6, 50 (1961). u y ana y IC lor m -. Iml ar y a e non-
s V. Kurilko and V. Miroshnichenko, Sov. Phys.-Tech. Phys. 7, analytic character of the "minus transforms" resides 

58~ £.9~~~on, Proc. Intern. Symp. Rarefied Gas Dyn. I, 395 (1967). in 1m (k) < 0+. 

868 
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Application of these transforms to (1) and (2) yields 

(5) 

n± = [No€(k) ± Wk,ot)]1 D(k), No = -Eo/47Te, (6) 

€(k) = iW;f+oo (og%u)du , D(k) = 1 - £(k), (7) 
k -00 (-iw + iku) 

and 

rJ(k,O±) =f+oo UgI(U,O±) du, w! = 47Te2no/m. (8) 
-00 (- iw + iku) 

Fractional accommodation and particle flux con­
servation at the boundary x = 0+ requires 

gl(U,O+) = 

{

-(I - a) nos-(O+) go(u) + ag
I
( -U, 0+), U > 0 

Co (9) 

gl(U,O+), u < 0, 

where 

Co = 100 

ugo du, nos-(O+) = J~oo ugI (u, 0+) dll. 

Similar considerations at x = 0- give the correspond­
ing expressions for gl(U, 0-). The substitution of these 
distributions into (8) produces 

~(k, O±) = =f(1 - a)S'F(O)I±(k) + as±(k) + S'F(k), 
(10) 

I+(k) = -L( -k) = -iw roo ugo(U) du, (Ila) 
Co Jo (-iw + iku) 

and 

S_(k) = -S+(-k) =Jo UgI(U,O+) du, (lIb) 
-00 (-iw + iku) 

so that S_(O) = nos-(O+)/(-iw). In the S±(k) defini­
tion we use gl(U,O+) = gl( -u, 0-), which follows 
from the antisymmetry of the applied fields at x = O±. 

Finally, combining Eqs. (5) to (11), 

No€(k) - (1 - a)S'f(O)I±(k) 

± as±(k) ± S'F(k), (12a) 
D(k) 

-iEo + i47Te[-(1 - a) 
X S_(O)I+(k) + as+(k) + S_(k)] 

kD(k) 

- iEo + i47Te[ -(1 - a) 
X S+(O)L(k) - S+(k) - as_(k)] 

kD(k) 

(12b) 

(12c) 

Expression (12b) could now be directly Fourier 
inverted to yield E(x > 0), if the source transforms 
S±(k) were known. But these depend directly on the 
return distribution to the boundary gI(U § 0, O±) 

Im(k) 

,, ____ , /{3fD 
/ "-

/ \ 
I \ , \ 

\ '1&1 IncreosinQ Re(k) 

\ Wcy / 

t,j~ -~/ 
-(3fD 

1(e) Hd) 

FIG. I. The dispersion denominator D(k): (a) Its branches Dl,.(k). 
(b) Its analytic continuation to the steepest-descent cut. (c) The 
dominant asymptotic1 ,' behavior of this new D(k). (d) The path for 
Fourier inversion for x > O. 

which must itself be found as part of the overall 
solution to the problem. Thus, to derive the law of 
field penetration one must first solve (12b) explicitly 
for E+ and then invert, or, alternatively, one inverts a 
suitable combination of the E+ and E_ transforms in 
which the unknown contribution of the Sol, terms to 
the electric field are cancelled. 

III. TRANSFORM-FUNCTION PROPERTIES 

The functions D(k), I ± (k), and S± (k) are al1 defined 
for real k, if we ascribe a vanishingly small positive 
imaginary part to w, corresponding to gradual growth 
of the external field. It is now useful to determine the 
analytic behavior of these functions in the remainder 
of the k plane. 

According to (7), D(k) originally defines a function 
cut along the line from -exOO to + ex 00 and ex = wllwl, 
with branches DI(k) and D2(k) right and left of this 
cut, as shown in Fig. I (a). Each branch can be analyti­
cal1y continued to the ful1 k plane with the consequence 
that D2(k) = DI ( -k). Then, from (7) and Ref. 10 

DI(k) = 1 + s2(2w~/w2)(1 + sZ(s», s = w/J2aok, 

t 2 00 (-s2tJ; 
Z(s) = i7T exp (-5 ) - 5 ~ , (13a) 

n~O (n + i)! 

D
I
(k) f"'oJ 1 _ w; (1 + 3ea~ + 15k4a~ + ... ) 

w2 w2 w4 

with 

+ . J; w;w -(U2/2ao2k2 
I')' ---e 

2 k3a~ , 

{

o < 0 

')' = I 1m (k) ......, 0 

2 > O. 

(13b) 

10 B. Fried and S. Conte, The Plasma Dispersion Function (Aca­
demic Press lnc., New York, 1961). 
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Im(k) Im(k) 

W>Wp 

FIG. 2. Properties of D1(k). 

The important features of DI(k) are indicated in 
Fig. 2. The function is analytic in the full k plane 
except for an essential singularity at k = 0 which 
produces divergence as the origin is approached within 
450 of the positive imaginary axis. Outside this sector, 

DI(k -+ 0) -+ D(O) = 1 - w!jw2. 

In the upper half-plane DICk) has an infinity of 
zeros symmetrically distributed about the 1m (k) axis. 
An asymptotic treatmentll shows that these converge 
along rays at ±45° from the imaginary axis to a 
condensation point at the origin. Using (l3b), we also 
find a pair of zeros near the origin and just above the 
real axis when W is slightly in excess of W ll • The right 
member of this pair kl(w > Wll) is Landau's least­
damped root. The remaining zeros at large 1m (k) 
must be located numerically. In the lower half-plane 
there is a single zero -kl(w < wp ) on the imaginary 
axis, if W < Wll; and no zeros, if W > Wll' From (l3b) 
we derive 

k1( W ~ wp )""" I~ Di(O) 
y3ao 

x {I + iy ~ (317)i _1_ e-3/[2D(O)]} (14) 
2 2 Di(O) , 

with 

{
I W > w~ y - ¥ 

o W < wll ' 

W ~ wp,and 

Di(O) = i 11 - w!jw2lt for W < wp. 

We can shift the branch cut for DCk) to an arbitrary 
line dividing the plane and passing through the origin 
by simply requiring that DI apply to the right of this 
line and D2 apply to the left. Across the new cut D(k) 
suffers the jump 

ilD = D2 - DI = -C217i)(w!w/k3a~)go(w/k). (15) 

It is particularly useful to run this branch cut along 
the "steepest descent path" from, say, - fJ ro to + fJ ro 

through the saddle points ks = ± Cw2/a~x)leiuI6 of the 
expressions ilDe±ikX, as in Fig. l(b). 

11 R. Hawks, Masters thesis, M.LT. (1967). 

This choice of cut constructs a new D(k) which has 
only the Landau zeros of Dl and D2 near the origin. 
These zeros are on the imaginary axis for w < Wp and 
in the first and third quadrants for Wp < w < wmax ' 

The 450 ray of Dl zeros in 1m (k) > 0 near k = 0 is 
excluded from the new D(k) by the "steepest descent" 
cut, as is the corresponding ray of D2 zeros in 
1m (k) < O. Some zeros at large 1m (k) may, however, 
be included, as must be investigated numerically. We 
must also expect the Landau zeros to cross the cut 
for some w = wmax ' 

From (15) and (l3b) we find that the cut in D(k) is 
weak, i.e., ilDj DI « 1, for Ikl« wjao. Then since 
±kl are close to the origin for w ~ Wll' these zeros 
dominate in D(k) for small k, effectively yielding 
Fig. 1 (c) and 

D(k) "" [D(O)/k;](k; - k2
) + O[(kaojw)2]. (16) 

Initially, the functions I+(k) and S+(k) are analytic 
in the full k plane except along the ray from k = 0 to 
k = IXOO in 1m (k) > O. This cut can be moved to 
coincide with the upper-half of the steepest descent cut 
for the new D(k) by appropriately shifting the path 
of u plane integration in the definitions (11). The cut 
for L(k) and S_(k) can be similarly shifted in 1m (k) < 
O. Then, across the steepest descent path we get, for 
example, 

ill+(k) = I H -I+I =(217i) w
2 
go(~), Im(k»O, 

k2cO k 
(17a) 

1m (k) < 0, 

(I7b) 

with subscripts" I" and "2" applying to the right and 
left of the cut,. respectively. 

The cut in 1 ± and S ± will also be weak for small k, 
if gl(U :;; 0, O±) falls off rapidly for large u, as would 
be expected. Thus, for Ikl « wjao we can expand the 
denominators of the defining integrals (11) in powers 
of kujw and integrate term by term to produce the 
asymptotic estimates 

I±(k) "" I±CO) + I'±CO)k + o[e:oJ] (ISa) 

= ±I + C::)k + o[e~orl (1Sb) 

S±(k) "" S±CO) + S'±CO)k + O[(~O)2J (1Sc) 
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Finally, we introduce a finite upper bound on all 
electron speeds, say lui < c, c » Go. This moves the 
branch points for I± and S± from the origin to 
k = ±w/c, and erases the cut in D(k) between these 
points, as in Fig. 1 (d), thereby creating an analytic 
real axis strip, which allows us to analyze (12) with the 
aid of Wiener-Hopf technique. 

IV. LIMITING SOLUTIONS 

A. Specular Reflection 

Let (J = 1 and add th'! E± transforms 

E = E+ + E_ = -2iEo/kD(k). (19) 

The S±(k) cancel in (19) permitting a direct Fourier 
inversion which may be completed over the 1 (d) 
contour when x > 0. Consistency with (13) requires 
that the integral pass below the E+ pole at k = 0, and 
above the E_ pole there. This is equivalent to taking 
the principle value at the origin. Thus, from the poles 
at k = ° and kl and the integral along the branch cut 
we obtain 

which separate f(k) into parts12 which are non­
analytic in just the upper or lower half-plane, 
respectively, provided that f(k) is analytic on a real 
axis strip, and thatf(k) -- k- p

, P > ° for k --- ± 00 in 
this strip. The [ ]+ contour passes along the real taxis 
and above the pole at t = k, k real. The [ ]_ contour 
passes below this pole. Thus,j(k) = [/(t)]+ + [f(t)1-. 

In particular, the application of these operations to 
In D(k) produces factors for D(k), i.e., 

D±(k) = exp ([In D(t)] ±}, D(k) = D+(k)D-(k), (23) 

such that D+(k) and D-(k) are zero and/or nonanalytic 
in only 1m (k) > 0, and 1m (k) < 0, respectively, and 
thus 

D+(k1) = D(k1) = 0, D-(k1) =;!: O} 
(tlD+(k»D-(k) = tlD, tlD-(k) = ° 1m (k) > 0, 

(24) 

while corresponding relations apply in 1m (k) < 0. 
Consequently, (21) can be written 

kD+E+ = -iEo/D- - i47Te[S_(0)(I+/ D-) - S_/D-]. 

(25) 

(20a) Let C(k) = I+(k)/D-(k), produce C±(k) = [/+(1)/ 
D-(t)]±, and rearrange (25) to 

(20b) 

and 

E(x > 0, (J = 1) --~ {I - eik1
"'} + B(1, x). (20c) 

D(O) 

A dotted equal sign appears in (20a) since the possible 
contribution of Dl zeros at large 11m (k)1 has been 
neglected. The integral B(l, x) is estimated in Sec. V. 
The exponential excitation in (20c) is computed with 
(16) for W R:; Wp and assumed to hold for arbitrary 
w, since away from Wp the cut contribution B(l, x) 
dominates the net asymptotic disturbance. This is 
essentially Landau's result. 

B. Diffuse Reflection 

Now set (J = 0. Equation (12b) becomes 

E+(k) = {- iEo + i47Te[ -S_(O)I+(k) + S_(k)]}/kD(k). 

(21) 

Since S+(k) is absent, (21) can be solved explicitly for 
E+ and S_ by means of the Wiener-Hopf technique. 

To proceed we require the operators [ ]± ' 

[J(t)]+ == -1. 1+
00 

J(t) dt dt = J+(k), (22a) 
27Tl Y-oo(+) t - k 

[J(t)1- == ~ 1+
00 

J(t) dt = L(k), (22b) 
2m Y-oo(-) t - k 

kD+(k)E+(k) + i47TeS_(O)C+(k) = -iEo (26a) 

-iE 
= __ 0 _ i47Te[S_(O)C_(k) - S-(k)/ D-(k)] 

D-(k) 

=-iEo , (26b) 

S_(O) = - Eo[D-(O) - 1 ]/47Te D-(O)C+(O). (26c) 

The right-hand sides of (26a, b) follow from the 
standard Wiener-Hopf arguments and the fact that, 
as k --- ± 00, C+ --- C_ --- S_ --- 0, while D+ --- D- ->­

I. To get (26c) we solve (26b) for S-Ck), set k = 0, 
and note that C+(O) + C(O) = 1/ D-(O). Finally, 
putting (26c) in (26a) and using (23) 

E(k) = - iE [1 + (1 - D-(O»C+(k)] D-(k). (27) 
-t 0 D-(O)C+(O) kD(k) 

We can readily shift the (22a) integral path for 
C+(k) to the upper-half of the steepest descent curve 
in the t plane, since D-(t) is analytic and nonzero in 
1m (t) > O. Thus 

C (k) = -1 1+00 

I+(t) dt 
+ 27Ti J-oc(+) D-(t)(t - k) 

I ifJoo M+(t) dt 
= - (28) 

hi 0 D-(t)(t - k)' 

12 B. Noble, Methods Based on the Wiener-Hopf Technique 
(Pergamon Press, Inc., New York, \958). 
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so that C+(k) is analytic everywhere, but on the 
corresponding cut in the k plane. It follows that 
E+(k) is nonanalytic on this cut, at the zeros of D(k) 
in 1m (k) > 0, and at k = O. Inverting over the 
1 (d) contour with an integral below k = 0, we there­
fore obtain 

E(x > 0, er = 0) 

--'- E {_I_ + [1 + (1 - D-(0»C+(k1)] D-(k1) 
- 0 D(O) D-(O)C+(O) k1(o D/ok)lkl 

x eik1X} + B(O, x), (29a) 

B(O, x) = -iEo (Pet)~ [D.D + (I - D-(O» 
2rrJo kDID2 D-(O)C+(O) 

x (D.DC+1 - D.C+D1)}ikX dk. (29b) 

The Appendix shows that for w ~ Wp and Ikl « wp/ao, 

which means, for example, that D- is dominated for 
small" by the lower half-plane zero of D, while the 
product D-'-D- from (30) equals our estimate (16) for 
D(k) to O[(kaolw)]' Also from (28) D.C+(k) = 
D.I+(k)/ D-(k), 1m (k) > 0, and since this jump is neg­
ligible for Ikl « w/ao, (28) expands approximately to 

C+(k),......, C+(O) + C~(O)k + o[ (k~0)2l (31) 

With these expansions (29a) becomes 

E . • 
E(x > 0, er = 0) __ -0 (l - e'klX) + B(O, x), (32) 

D(O) 

which agrees, except for the branch-cut term, with 
our specular result. Again, since B(O, x) dominates 
the net asymptotic field for w away from W p , (32) is 
good for all w at great depths in the plasma. 

V. ASYMPTOTIC SOLUTION (ARBITRARY 0') 

For arbitrary er we formally invert the sum E+ + erE_ 
with an integral running along real axis below the E+ 
pole at k = 0, but above the E_ pole there, and 
closing over the 1(d) contour. There results 

E(x > 0 er) == ~ + iN(k1) eik1X + B(er x) 
, D(O) k1(oD/ok)lkl ' , 

(33a) 
N(k) = -iEo + i4rre[-(1 - er)S_(O)I+(k) 

+ erS+(k) + S_(k)], (33b) 

B(er, x) = -i(t + er)Eo (Pet)~ eikx elk 
2rr Jo kDID2 

+ i(l - er) (Pet) (MID.D - D1D.M) eikx dk, (33c) 
2rr Jo kDID2 

and 

M(k, er) = 4rre[ -S_(O)(I+(k) - erI_(k» 

+ (I + er)S_(k)]. (33d) 

The function N(k) is the numerator of E+ in (l2b). 
Note that E_ makes no contribution to the residue 
at kl' since this function is analytic in 1m (k) > O. 
Similarly, N( -k1) = 0, since E+ is analytic in 
1m (k) < O. 

When w ~ Wp, Ik11« wp/ao. For such small k we 
can asymptotically expand N(k) by virtue of (\8). 
Thus 

I [(k1ao)2] N( -k1) = 0 = N(O) + N (0)( -k1) + 0 --;;; . 

(34) 

Then, since (33b) and the S ± ' I ± definitions show that 
N(O) = -iEo, (34) yields N'(O), and thus 

[(
k1ao)2] N(k) -- -iEo(l + k/k1) + 0 --;;; . (35) 

Using this and (16), (33a) becomes for all er 

E(x > 0 er),......, ~ {I - e+ik1X} + B(er x). (36) 
'D(O) , 

Last, we employ the method of steepest descent to 
estimate B(er, x). By construction M(k, er) is inde­
pendent of S+(k). Thus, D.M(k) = -4rreS_(0)D.I+(k), 
1m (k) > 0, is known to within the constant S_(O). 
Also the path of integration has already been chosen 
so as to pass through the saddle point ks of the 
exponential factor go(w/k)e+ikX, which dominates each 
term in the (33c) integrands. Hence, we simply 
evaluate the nonexponential factors at ks' shift them 
outside the integral sign, and complete the integration 
in the usual manner. Then, since D.I+/D.D,......, ks and 
M(k, er) ,......, ks as x -+ 00 and ks -+ 0, the first integral 
in (33c) dominates the second for large x and yields 

B( ) (1 + er) Eo (w!) f erx,......, ---T , ../3 D2(0) w2 

X exp (_hf e-i/T/3)e+i2/T/3, (37) 

with 0 ~ er ~ 1 and T = wx/ao » 1. 
Near Wp the exponential term is slowly damped, 

so the er dependence of the net asymptotic field is 
negligible, except at the greatest depths. Away from 
W p , the weak er dependence of B( er, x) which dominates 
asymptotically, will prevail. 
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VI. THE GENERAL SOLUTION 

Equation (12a) can be expressed in the vector form 

(~:) = G(k, a)C~) 

(

0 + a)No€(k) - (1 - a)S._CO)[I+(k) - aL(k)]) 

+ D(k) , 

No€(k) - (1 - a)S+(O)L(k) 

G(k, a) = ( -a 

-D(k) 

(I - a
2») 

D(k) . 

-a 

(38a) 

(38b) 

If G(k) can now be factored into two nonsingular 
matrices G(k) = G+(k)G-(k) with G+(k) and G-(k) 
nonanalytic in 1m (k) > 0 and 1m (k) < 0, respec­
tively, then (38a) can be solved for (n±, S±) by means 
analogous to those for our earlier diffuse solution. 
Equation (5) then yields E+(k), which can be inverted 
over led). 

For a = I and a = 0 possible factorizations are 

G( k, 1) = ( - to) (1 0) 
-1 + €+ -1 -€_ 1 

= G+(k, 1)G-(k, t), 

G(k 0) = (0 1/ D+) (D- 0) 
, -D+ 0 0 1/ D-

= G+(k, O)G-(k, 0), 

with D(k) = I - €(k), €± = [€(t)]±. Use of these 
matrices reproduces our earlier specular and diffuse 
solutions. For arbitrary a, however, no general 
factorization is available. We, therefore, re-examine 
(12a) and seek separate series solutions in powers of 
oc = 1 - a and a. This is equivalent to finding 
factorization for G(k, a) by iterating our limiting 
results. 

A. Specular Series 

Assume that n± = L ocqn~), S± = L ocqs~) with 
oc = I - a, substitute these expansions into (12a), 
and add the resultant transforms. To each order in oc 
one finds 

nCO) = n~) + n~) = 2No€(k)/ D(k), (39a) 

{

_s_(0)(a-1)1+ _ s_(0)(a-1)L } 
- S (k)(q-l) + S (k)(a-1 ) 

n(q) - +-
(02-1) - D(k) 

= 2N08(k)(0) 
- D(k) (39b) 

S~) = T[D(t)n~)(t)]± ± No€±(k), (39c) 

S!:) = T [D(t)nl!)(t)]±, (39d) 
(q/I) 

where n~) = [n(o)(t)]± and (39c, d) are established by 
applying the separation operators to D(k) times the 
expanded (12a) equations. The function 8(k)«(/) , q ~ 1 
is defined by (39b). We also set 8(kYO) == 1. 

Add the field transform equations (5), and substi­
tute n = L ocqn(q) , as derived from (39). Then, 
assuming uniform convergence for oc sufficiently small, 
invert the series term by term over the led) contour, 
taking the principle value at k = O. Since 8(0)(q) = 0, 
q ~ I, there results 

E(x > 0, oc) 

-'- E (_1_ + 2e
ik1

'" ~ oc08(k )(q») 
- 0 D(O) k1(iJD/iJk)lkl ~ 1 

+ B(oc, x), (40) 

B(oc, x) = - ~EolfJOO[ ~ ocq(.6.DSio) - .6.8(a) D1)] 

eik'" 
X --dk. 

kDID2 
B. Diffuse Series 

Substitute n± = L ain<J:) and S± = L aiS<J:) into 
(12a). To each order in a we get equations which can 
be solved by the Wiener-Hopftechnique. Accordingly, 

nCO) = l... [NO€(k) - S-<0)(0)1+J (41a) 
+ D+ D- +' 

n!:) = _1_ [S!:-O + (S_(O)(H) - S_(0)(;)1+J 
(J2- 0 D+ D- + 

_ No(1 - D-(O» C!:\k) 
= D-(O)C+(O) D+(k) , 

(4tb) 

S(O) = ± D±[No€(k) - S±(0)(0)1±] (41c) 
± D± ±' 

and 

S~) = _ D± 'F T ± ± 'F. 
. [SU-O ""]"" (S (0)( i-I) - S (0)(;)1 ] 

(i2-0 D± ± 

(4td) 

Equation (41b) defines C!;>(k). We also let C!:)(k) == 
C+(k) of (28). Then combining (5) with the n+ series 
determined from (41), integrating term by term over 
the l(d) contour, and noting that n~)(O) = 0, j ~ 1, 
we can derive 
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C. DISCUSSION 

To solve the problem of field penetration into a 
semi-infinite plasma, we have examined a corre­
sponding medium filling the full space and divided 
at x = ° by a sheet of oscillating external charge. 
This charge gives rise to anti symmetric fields and 
symmetric density disturbances, so that for each 
electron approaching the sheet or boundary from the 
right there is a "twin" approaching from the left. 
Hence, our specularly reflected electrons effectively 
pass unaltered through the boundary, while the 
diffusely reflected ones return with a Maxwellian 
distribution to their original half-space. Thus for 
a = 1 the disturbances in the two half-planes are 
completely coupled, while for a = 0, they are 
thoroughly isolated. 

Our specular series solution assumes in zero order 
that all electrons pass freely through the boundary. 
To O(ex.) it converts the incident zero-order distribution 
to Maxwellian form at x = 0, and produces first-order 
disturbances which themselves freely penetrate the 
boundary. To o (ex.2) these are converted to Maxwellian 
form, etc. Alternatively, our diffuse series assumes 
complete isolation of the two half planes in zero order, 
and allows for "leakage" of zero-order electrons 
between the two half-planes to O(a), etc. Since our 
asymptotic solution for large x exhibits only first-order 
dependence on a, it would seem that for an accurate 
description of the field only the first few terms of each 
series may be required, and thus rapid convergence is 
expected for both iterative schemes. 

We note that (40) and (42) can be made more ame­
nable to numerical calculation by shifting the branch 
cuts for all transform functions from the steepest 
descent path back to a line neighboring the real axis, 
as in Fig. 1 (a). This constructs a new D(k) which 
has no zeros for 01 > 011) and only the Landau zeros 
for 01 < 011)' Expressions (40) and (42) will then 
have, at most, a single exponential mode for 01 < 011), 
while B(ex., x) and B(a, x) can readily be computed as 
integrals along the positive real k axis. 
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APPENDIX 

To find D-(k) for small k we make the asymptotic 
expansion 

D-(k) = exp {_I_. ,COO In Det) dt} 
2m J-oc(-) t - k 

"'" exp {Au + A1k + A2k2 + O(k3)} 

"'" D-(O){ 1 + Alk + Ci ~ 2A2) k2 + O(k3)}, 

(AI) 
with 

A = _1_ ,Coo In D(t) dt = _1_ 1+00 
D'(t) dt , 

n 27Ti J-oc(-) tn+l 27Ti J-td-) nD(t) t" 

n Z 1, (A2) 

where the final equality follows from integration by 
parts. Evaluating this over the contour that mirrors 
Fig. 1 (d) in 1m (k) < 0, we pick up a residue at the 
D(t) zero -kl' and a contribution from the branch 
cut, i.e., 

where the path for ~ is the s-plane mapping of the 
usual steepest-descent curve. 

For small nand 01 :=:::; 011) we expect that Btl is 0(1), 
since the Dl,2(S) are slowly varying and nonzero along 
the integral path. Thus, 

D-(k) = D-(O){l + (~+ Bjl)k 
kl 01 ao 

+ (o[~J) k 2 + O(k
3
)} 

klO1jao 
= [D-(O)jkl](kl + k) + O(kaoj01). 

Further, by substituting -k in (22b) and (23) one can 
show that D+(k) = D-( -k), and thus 

D±(k) = D-(O) (kl =F k) + 0 (kao) , (AS) 
kl 01 

where, since D+(k)D-(k) = D(k) = D-( -k)D-(k), 
we have 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 6 JUNE 1968 

Generalized Ornstein-Zernike Approach to Critical Phenomena 
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A generalization of the Ornstein-Zernike integral equation is derived and suggestions are made about 
a possible application to an improved theory of critical phenomena. A fundamental maximum principle 
of statistical mechanics is used to place the generalized equation in the context of phase transitions and 
critical points. The equation is a relationship between a generalized correlation matrix by means of which 
the average fluctuation product of any two sum functions may be expressed and a generalized direct­
correlation matrix which is the second functional derivative of the functional in the maximum principle. 
The existence of a critical eigenvector of the direct-correlation matrix is proposed and three physical 
meanings of this vector are given. An explicit formula for the direct-correlation matrix is given and is 
used to derive two asymptotic properties. This formula exhibits an unexpected relationship between the 
generalized Ornstein-Zernike equation and the Percus-Y evick equation. 

Of the many anomalous phenomena which take 
place in a fluid as its critical point is approached 
perhaps the most striking is the sudden development 
of a dense white opacity in the otherwise transparent 
fluid. A theory of this phenomenon, critical opales­
cence, was given a half century ago by Ornstein and 
Zernike in a famous series of papers! which illumi­
nated not only this particular problem but some of 
the outstanding fundamental questions of statistical 
mechanics of the time. Somewhat earlier, van der 
Waals had presented his well-known molecular theory 
of thermodynamic properties near the critical point. 2 

In his second published paper, Gibbs3 gave a beautiful 
and thought-provoking diagram which expresses the 
essential qualitative features for the van der Waals 
theory with characteristic economy and clarity. The 
Ornstein-Zernike theory and the qualitative theory of 
Gibbs provide an explanation for both fluctuation 
and thermodynamic phenomena near critical points 
which is in many ways very satisfactory and which has 
not been challenged until very recently. 

This challenge has come about through a closer 
investigation, both theoretical and experimental, of 
various critical phenomena motivated by the evidently 
deep-going analogy among such disparate and 
important phenomena as the .Ie transition in liquid 
helium, ferromagnetic and anti ferromagnetic transi­
tions, and order-disorder phenomena in alloys as well 
as the liquid-vapor critical point.4 Although these two 

1 L. S. Ornstein and F. Zernike, Proc. Roy. Acad. Amsterdam 
17,793 (1914); F. Zernike, Proc. Roy. Acad. Amsterdam 18,1520 
(1916). 

2 J. D. van der Waals, Die Continuitat des Gas-formigen lind 
Fliissigen Zustandes (Verlag Johann Ambrosius Barth, Leipzig, 
1881). 

3 J. Willard Gibbs, The Collected Works of J. Willard Gibbs 
(Longmans Green and Co. Inc., New York, 1931), Vo!' I, p. 44. 

4 M. S. Green and J. V. Sengers, Eds. Critical Phenomena: Proceed­
ings of a Conference, Washington, D.C., 1965 (N.B.S. Misc. Pub!. 
223) (National Bureau of Standards, Washington, D.C., 1966). 

theories give the major qualitative features of the 
phenomena, they fail quantitatively more and more 
as the critical point is approached. It is characteristic 
of the Ornstein-Zernike theory as well as of the Gibbs 
theory that a fundamental element (in the one case, the 
direct-correlation function, in the other, the energy­
entropy-volume relationship) has a simple analytic 
behavior. Anomalies, infinities, discontinuities in light 
scattering, compressibility, heat capacity, and the like 
come about through the singularity of the relationship 
between the measured quantity and the assumed 
simple behavior of the fundamental element. The 
success of these theories consists in the fact that 
anomalies are predicted which agree qualitatively with 
actual observed behavior. Their failure consists in the 
fact that they predict only poles, square-root branch 
points, or jump discontinuities, while experiment 
indicates more complicated singularities.5 

It is the purpose of this paper to present a formal 
relationship which is a natural generalization of the 
integral equation connecting the correlation function 
with the direct-correlation function in the Ornstein­
Zernike theory, to derive certain properties of the 
mathematical objects appearing in this equation, and 
to place the generalized equation in the context of 
phase transitions and critical phenomena through an 
appropriately generalized version of the Gibbs picture. 
At the end of the paper we present a prospect suggest­
ing how the developed formalism together with the 
derived properties of the mathematical objects might 
be exploited to yield a theory of critical phenomena. 
An earlier version of some of the ideas of the present 
paper have been given in a series of lectures by the 

5 G. E. Uhlenbeck, Critical Phenomena: Proceedings ofa Confer­
ence Washington, D.C., 1965, M. S. Green and J. V. Sengers, Eds. 
(N.B.S. Misc. Pub!. 223) (National Bureau of Standards, Washing­
ton, D.C., 1966), p. 3. 
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author delivered at the Cargese Summer School, 
1965.6 

In Sec. I, we present the Ornstein-Zernike theory in 
a form suitable to generalization. In Secs. II, III, and 
IV we define the generalized correlation matrix and 
exhibit its relationship to the average fluctuation 
product of arbitrary sum functions. The fundamental 
maximum principle for equilibrium-statistical me­
chanics is stated in Sec. V and used to define the direct­
correlation matrix in Sec. VI. The relationship between 
the direct-correlation matrix and the transformation 
from the formulation of statistical mechanics in terms 
of potentials to the formulation in terms of molecular­
distribution funct{ons is given in Sec. VII and the 
generalized Ornstein-Zernike relation is presented in 
Sec. VIII. In Sec. IX a formula for the direct correla­
tion matrix, which is derived in Appendix B, as well as 
certain of its asymptotic properties, which are derived 
in Appendix C, are stated, while an unexpected 
relationship between the generalized Ornstein-Zernike 
relation and the Percus-Yevick equation is presented 
in Sec. X. In Secs. XI and XII the generalized equation 
is placed in the context of phase transitions and 
critical points with the help of the fundamental 
maximum principle. In Sec. XII, the concept of the 
critical eigenvector of the direct-correlation matrix is 
introduced. Section XIII is a prospect suggesting 
directions of future research. 

I. THE ORNSTEIN-ZERNIKE THEORY 
OF CRITICAL FLUCTUATIONS 

Before presenting the theory, which is the main 
subject of the present paper, we will present the 
Ornstein-Zernike theory in a form most parallel to 
our generalized theory. This is not the original version 
but is a combination of several recent points ofview. 7

•
8 

Since the purpose of this section is to provide a 
pattern for the generalized theory we use heuristic 
arguments freely. In Ref. 6 it has been shown that 
for a system in contact with a heat reservoir of 
temperature T = ljkfJ and with a reservoir of mole­
cules of chemical potential fl and subject to a single­
particle potential vex), the equilibrium-density 
distribution is that one for which the functional 

log3 = -fJA(p(x), T) + f ip(X)p(x) dx (1) 

---
• M. S. Green, Cargese Lectllres in Theoretical Physics; Statistical 

Mechanics, B. Jancovici, Ed. (Gordon and Breach Science Publishers, 
Inc., New York, 1966), p. 59. The ideas on the thermodynamics of 
critical phenomena of L. Tisza have given much insight into these 
lectures, as well as the present paper. See L. Tisza, Phase Transforma­
tions in Solids, R. Smoluchoeski, Ed. (John Wiley & Sons, Inc., New 
York, 1957), p. I; and more extensively in Ann. Phys. (N.Y.) 13, I 
(1961). 

, J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 218 (1963). 
• L. Landau and E. M. Lifshitz, Statistical Physics (Addison· 

Wesley Pub!. Co. Inc., Reading, Mass., 1958), pp. 363, et seq. 

is a maximum, where 

ip(x) = fJ( -VeX) + fl), (2) 

and A(p(x), T) is the Helmholtz free energy given as a 
functional of the number density p(x) and as a function 
of the temperature. The form of this functional as a 
series of cluster integrals is given, for instance, in 
Ref. 9. In a one-phase region the equilibrium-density 
distribution corresponding to a given tp(x) is given by 
the variational equation 

a log 3 OA 
apex) = -fJ apex) + ip(x) = 0, 

aA 
or ip(x) = fJ -. (3) 

op(x) 

In case there is no external potential Eq. (3) simply 
states 

aA 
fl=--· 

apex) 
(4) 

In the neighborhood of the density distribution which 
satisfies Eq. (3), log 3 may be represented as 

log 3 = log:§: - ~ f ap(x)op(x') 

o2A 
X dx dx', (5) 

ap(x)op(x') 

where log:§: is the equilibrium value of log 3. In the 
absence of an external potential 

log 8 = fJPV. (6) 

The quadratic functional in Eq. (5) represents the 
deviation of log 3 from its maximum value due to a 
density fluctuation op(x). Since log 3 is a maximum, 
the quadratic functional must be positive-definite or 
semidefinite. Thus the exponential of this quadratic 
form, i.e., the distribution of density fluctuations, 
may be approximated as a generalized Gaussian. 
From a theorem on multivariate normal distributions, 10 

the average value of the product (op(x)op(x'») may be 
determined as the reciprocal of the kernel of the 
quadratic form o2AjIJa(x)IJp(x'): 

f (op(x)bp(x'»)fJo2A jop(X' )op(x")dx' = o(x - x"). 

(7) 

In the case of no external potential the average density­
fluctuation product may be presented in the form 

po(x - x') + p2G(lx - x'l), (8) 

• T. Morita and K. Hiroike, Progr.Theor. Phys. 25, 532 (1961). 
10 H. Cramer, Mathematical Methods of Statistics (Princeton 

University Press, Princeton, N.J., 1951), pp. 310, et seq. 
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where G(r) is the so-called pair-correlation function. 
In terms of the molecular-distribution functions 
1(1 ... n), G(r) is defined by the formula: 

1(1)f(2)[G(r) + 1] = 1(12). (9) 

G(r) goes to zero for large r. 
An examination of the explicit formula for A(p(x), T) 

shows that its second functional derivative for a 
spatially uniform density may be written in the form 

(Jb 2Ajbp(x)bp(x') = ~ b(x - x') - T(Jx - x'l), (10) 
p 

where T(r) is a function of r which goes to zero for 
large r. For reasons connected with the original 
derivation of Ornstein-Zernike, T(r) is called the 
direct-correlation function. If we substitute Eqs. (8) 
and (10) into Eq. (7) we obtain a relation between 
G and T. 

G(x) = T(x) + J G(x')T(Jx - x'l) dx'. (11) 

This is the Ornstein-Zernike integral equation. 
If we are dealing with a fluctuation from a spatially 

uniform state, the kernel Tin Eq. (II) is translation­
ally invariant. Its eigenfunctions are of the form 
exp (ik . x), where k is an arbitrary wave vector, and 
its eigenvalues are 

A(k) = 1 - pt(k), (12) 

where t(k) is the Fourier transform of T(r). 
The critical point corresponds to a zero of the 

eigenvalue A(k) for k = 0: 

A(O) = I - pl(O) = O. 

The eigenvalues (or Fourier components) of the 
kernel (bp(x)bp(x'» are, by Eq. (7), A-l(k). Thus, near 
the critical point the small-k, or large-wavelength, 
components of the density fluctuations will have large 
amplitudes. 

The vanishing of the eigenvalue, Eq. (12), may be 
viewed from another point of view. Equation (3) 
gives the means for determining for any density 
distribution the corresponding tp(x) which will 
maintain this distribution in equilibrium. The small 
change btp(x) which corresponds to a change bp(x) in 
the density distribution is given by taking the differ­
ential of Eq. (3) 

btp(x) = J (Jb2Ajbp(x)bp(x') dx'. (13) 

The vanishing of the eigenvalue A(O) means that there 
is a (spatially uniform) bP which corresponds to no 
change btp, i.e., in the absence of an external potential, 
to no change in the chemical potential. Thus we have 

(Oil) = O. 
op T 

(14) 

This is one of the thermodynamic conditions for a 
critical point. Thus at the critical point we have a 
singularity in the transformation from chemical 
potential to density. (We will discuss the complete 
thermodynamic characterization of the critical point 
in connection with the generalized theory.) Although 
we have only given a heuristic discussion of them, all 
the aspects of the Ornstein-Zernike theory, which we 
have presented up to this point, may be made rigorous. 
There is one feature of the original theory which 
cannot be made rigorous and is presumably not true. 
This is the assumption that T(r) is short ranged, even 
at the critical point. It is this assumption, which is 
responsible for the well-known prediction of the 
Ornstein-Zernike theory that near the critical point 

G(r) ""' exp - ocr, (15) 
r 

where oc ~ 0 at the critical point. 
Among the aspects of this presentation of the 

Ornstein-Zernike theory for which we will find 
generalizations in what foUows are: density fluctuation, 
correlation function, maximum principle, direct­
correlation function, transformation from chemical 
potential to density, and zero eigenvalue. 

II. FLUCTUATIONS OF A SUM FUNCTION 
FROM ITS EQUILIBRIUM AVERAGE VALUE 

Let us consider the fluctuations of phase functions 
of the form 

A(1 ... N) = L a(i) + L a(ij) 
all Singlets all pairs 

+ L a(ijk) 
all triples 

= L a([v]), (16) 
[vl~[Nl 

where [v] represents a subset of the particles (1 ... N) 
containing v particles and the sum is over all subsets of 
1 ... NY The functions a([v]) have the cluster 
property. We may assume a([v]) = 0 for v> vo. 

11 We use the following notation here and in subsequent sections: 
[v] signifies the coordinates and momenta of a set of v molecules. 
d[v] signifies the phase-space volume for the v molecules. We use the 
usual set-theoretic symbols to indicate conditions on summations 
over sets: 

[v] C [,11]. the set [v] is properly included in the set [,11]. 
[v] ~ [,11]. proper inclusion or identity. 
[v]" [,11], the set consisting of all elements common to [v] and [,11], 
[v] U [,11]. all elements belonging either to [v) or to [,11]. 
[v] EB [,l] is defined only when [v] and [,11) are disjoint and is then 

their union. 
[,11] 8 [v] is defined only when [v] ~ [pI and is then the complement 

of [v] in [,11). 
iE [v). i is a member of [v]. 
v means the number of molecules in the set [v]. 

Sometimes we use a set symbol as an exponent of (-1) in which 
case the number of particles in the set is meant. 

A summation over sets is indicated by the usual summation sign 
and means summation over all sets satisfying the conditions which 
appear below the summation sign. 
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Such functions have been called sum functions 
because the value of such a function for the union of 
two widely separated sets of molecules is just the sum 
of its value for each group separately. 

If the functions aery]), for example, are different 
from zero only when all the particles of the set [v] 
lie within a certain region of ordinary space, A 
represents a local property of the system. Thus for 
example if a(i) is simply (ljlJR)ER(x i ), where ER(X) 
is the characteristic function of a region R of ordinary 
space and lJR its volume, A represents the number 
density of particles in R. If the a([v)) are translation­
ally invariant, A represents a global property of the 
system. Thus for 

2 

a(i) = ;~, 

a(ij) = v(lx i - x;l), 

a(ijk), ... etc. = 0, 

(17) 

A is the total energy of the system under the assump­
tion of only pairwise-intermolecular forces. If for 
example, 

1 p2 
a(i) = - --.!:.. ER(x;), 

lJR 2m 

1 (18) 
a(ij) = - V(lXi - x;I)ER(xi)ER(x;), 

lJR 

a(ijk) etc. = 0, 

A represents the energy density in the region R. 
The equilibrium average value of A may be easily 

expressed in terms of the reduced equilibrium molec­
ular-distribution functions 

00 1 f (A) = ~1;! a(l'" n)f(l ... n) d(1) ... den). (19) 

The mean-square fluctuation of a sum function A, 
«A - (A»2), or the mean product of the fluctuation 
of A and the fluctuation of another sum function B, 
«A - (A»(B - (B»), 

B(l ... N) = ! b([v]), (20) 
[v]<::::; (1'" N) 

may also be expressed in terms of the molecular­
distribution functions as a bilinear form in the a's 
and b's: 

«A - (A»(B - (B») 

oooollI 
= ~lll n! m! d[n] d[m]a([n))b([m])r([n], [m)), 

(21) 

r([n], [m)) = fern EB [m)) - f([n))f([m)) 

+ ! O([K], [K'))f([n] U em)). (22) 
OC[K]<::::; [n] 

OC[K']<::::;[m] 

In Eq. (22), O([K], [K')) is a delta function which 
contributes only when the set of particles [K] coincides 
with the set [K']. The delta function O([K], [K')) may 
be defined by the property that for any sequence of 
functions K([K]): 

K([K)) = Jl :! f O([K], [K'))K([K')) d[K']. (23) 

Note that for configuration in which none of the 
particles of em] coincides with a particle of en], which 
is in some sense most configurations, only the first 
two terms of Eq. (22) contribute to r. When some of 
the particles coincide, r is given by a delta function 
corresponding to the coincident group of particles 
multiplied by the distribution function J([,u] u [v)) 
of all distinct particles. An explicit representation of 
O([K], [K')) is given in Appendix A. 

The matrix r([m], [n)) may be considered to be one 
generalization of the average density-fluctuation 
product (6.p(x)6.p(x'», Eq. (8). Indeed, if we suppose 
that a fluctuation in the value of a sum function 6.A 
from equilibrium arises as a consequence of a fluctua­
tion 6.f in the distribution functions from their 
equilibrium average values we may write 

00 1 f 6.A =n~ln! a([n))6.f([n])d[n]. (24) 

If we form the average (6.A6.B), we see that we have 
the interpretation 

r([m], [n)) = (6.f[m]6.f([n»). (25) 

III. POTENTIALS OF AVERAGE FORCE 

In the generalized Ornstein-Zernike theory of the 
present paper another matrix arises rather naturally 
which is closely related to r([m], [n)) and which may 
be considered to be the average fluctuation product 
of the potentials of average force. It will be to this 
matrix, rather than r, which we will give the name 
correlation matrix, and which we will take to be the 
analog of the correlation function of the Ornstein­
Zernike theory. Before we consider this matrix in 
detail let us digress to discuss the representation of the 
molecular-distribution functions in terms of the 
potentials of average force. 

The system of molecular-distribution functions 
J( [n]) represent a complete statistical description of 
any system of a large (even indefinite) number of 
identical molecules in phase space. For a system 
consisting of a single phase in thermodynamic equilib­
rium these functions may not be chosen arbitrarily 
but must be assumed to have the product property 

fern] EB [m)) -+ f([n])f([m)), (26) 
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when the group of molecules [m] is removed far from 
the group [n]. The molecular-distribution functions 
do not represent a mutually independent set of 
functions. The information contained in any molecular­
distribution function redundantly expresses informa­
tion already contained in the distribution function for 
a group of fewer molecules. One way of representing 
the information contained in the molecular-distribution 
functions nonredundantly is through the sequence of 
potentials of average force. This sequence of functions 
is defined by the formulas 

10gf(1) = 1j!(1), 

logf(12) = 1j!(I) + 1j!(2) + 1j!(12), (27) 

logf([n]) = L 1j!([v)). 
[v)~[n) 

It is easily verified that, if thef([n)) have the product 
property, the 1j!([n)) have the cluster property; i.e., 

1j!([n] ffi [m]) --+ 0 

when the groups [n] and [m] are separated far apart. 
Conversely, when the 1j!([n)) have the cluster property, 
thef([n]) have the product property. Since the limiting 
value of the 1j!( [n]) for widely separated groups is zero, 
the later members of the sequence do not contain 
information about the earlier members. The 1j!([n]) 
are a mutually independent sequence of functions 
which contains the same information as the sequence 
of molecular-distribution functions. In order to assure 
that the fern]) are positive we need only assume that 
the 1j!([n]) are real. 

Equation (27) may be inverted by the formulas 

1j!(1) = logf(l), 

1j!(12) = -logf(l) - logf(2) + logf(12), (28) 

1j!([m]) = L (_l)m-v logf([v D. 
[v)S::: [m) 

IV. THE CORRELATION MATRIX 

The matrix f([m], [n]) has the property that an 
element is different from zero only if some of the 
members of the sets [m] and [n] are close to each 
other. It is, however, by no means necessary for a 
nonzero f([m], [n]) that all members of the sets [m] 
and [n] must be close together. Indeed the value of 
f([m], [n)) depends essentially on the subsets of 
[m] and [n], which are close enough to be mutually 
correlated to each other, and only trivially on the 
remaining molecules. Thus let [m'] and [n'] be the 
subsets of [m] and [n] which together contain all 
groups of molecules having members from both [m] 
and [n] which are mutually correlated and let [m"] 

and [n"] be the remammg molecules belonging to 
[m] and [n] respectively. 

Then 

f([m] U [nJ) = f([m'] U [n'])f([m"])f([n"]), (29) 

since [m"] and [n"] may not be close to each other nor 
to [m'] or [n'], and since [m'] n [n'] = [m] n [n]. 

Thus we have from Eqs. (22) and (29) 

f([m'] ffi [m"], [n'] ffi [n"J) 

= f([m'], [n'])f([m"])f([n"]). (30) 

Equation (30) suggests that f([m], [nD may be 
constructed from another matrix G([m], [n]) which 
is different from zero only for groups [m] and [n] 
such that all the members of [m] are close enough to 
members of [n] to be mutually correlated and vice 
versa. This is indeed the case. 

Let us define G([m], [nJ) by the relation 

f([m], [n]) = L f([mDf([n])G(Lu], [vD· (31) 
[v)~[n) 

[I')~[m) 

Noting the inverse relationship between the operations 

Land 1 (_1)n-v, 

[v)~[n) [v)~[n) 

we may write 

G([m], [n]) 

= L (_lyn-v)+(m-It )f([,u], [v])f([,uJf([v]). (32) 
[v)~[n) 

[It)~(m) 

Now, if, in Eq. (32), the set [n] has a subset [n"], 
which is far from both [m] and its complement [n'] in 
[n], G([m], [n]) is zero, for, writing [v'] S;; [n'], 
[v"] S;; [n"]' and [v'] ffi [v"] = [v], we have by Eq. 
(30) 

f([,u], [v]) = f([,u], [v'])f([v"]), (33) 

and by the product property Eq. (26) 

f( [v]) = f( [v'])f( [v"]). 

Thus the summand in Eq. (32) depends only on the 
number of particles in [v']. Carrying out the summa­
tion over v", keeping [,u] and [v'] fixed, gives zero. 
The matrix G([m], [n]) is different from zero only if 
there is no set [n"1; i.e., unless all molecules of [n] 
are correlated to [m] and vice versa. 

By Eq. (27), we may write for a small fluctuation 
in the distribution function 

df([nJ) = fern]) L d1j!([vD (34) 
[v)~[nl 
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and, forming the average fluctuation product, we have 

(df([n])df([m]» 

= f([n])f([m]) ~ (d1j!([v])d1j!(Lu]»; (35) 
[y]S; [n ] 

i.e., by Eq. (31) 
[p]S; [m] 

G([m], [n]) = (d1j!([m])d1j!([n]». (36) 

As we have remarked above, G([m], [n]) will be 
called the correlation matrix. 

It will be useful to express the fluctuation of sum 
functions in terms of the fluctuations of the potentials 
of average force. This may be done with the help of 
Eq. (34). We have 

dA = ~ ~ Ja([nDdf([n]) d[n] 
n! 

= ~ ~ Ja([n])f([n]) ~ (d1j!([v])) dn. (37) 
n. [v]S;[n] 

Ifwe break up the integration over [n] into an integra­
tion over the complement of [v] in [n], say [h], and 
then over [v] noting that there are n!/v! h! ways of 
choosing the set [v] from the set [n] without changing 
the value of the integral, we obtain 

dA = ~t:! :! 
x J a([v] EB [h])f([v] EB [h])d1j!([v]) dry] d[h]. (38) 

This linear form in the d1j!([V]) may be written 

dA = ~ ~ J Ot(v)d1j!«vDf([vD dry], (39) 

where the coefficient of d1j!([V]) is defined by 

00 1 J Ot([v ])f([v D = ,,~o h! a([v] EB [hDf([v] EB [h]) d[hJ. 

(40) 

The sequence of functions Ot([v]) characterizes the 
sum function A just as the sequence a([v]) does. 
However, the Ot([vD depend on the f([vD and are 
therefore especially suited to represent the fluctuations 
A around an equilibrium state described by the 
distributions f( [v D. 

If we form the average fluctuation product using 
Eq. (39), and the corresponding equations for dB, 
we obtain 

(dAdB) = r 

L .!~ 
vi pi v! ft! 

x J d[m] d[n]f([nDf([m])G([m], [nDOt([nD/i'([m]). 
(41) 

Thus the correlation matrix G([m], [nD is the kernel 
of the bilinear form which expresses the average 
fluctuation produce (D.Atl.B) in terms of the at( [v]) 
and /i'([v]). 

V. FUNDAMENTAL MAXIMUM 
PRINCIPLE 

Gibbsl2 showed that the equilibrium distribution in 
phase space is that normalized distribution which 
makes a certain functional attain its maximum value. 
In Ref. 6 it was shown that this maximum principle 
can be expressed in a form in which the independent 
variable is the system of molecular-distribution 
functions. In this section we will restrict ourselves to 
one-phase situations, i.e., to systems of molecular 
distributions which have the product property. 

Let us denote by the sequence of functions rp([v]) 
the following quantities: 

rp(l) = .s[ft - :l + V(Xl)} 

rp(12) = - /i'V(XlX2), (42) 

rp(123) = - .sV(XlX2Xa), etc., 

where .s = l/kT; ft, the chemical potential; v(x l ), 

V(XlX2), V(Xl X 2Xa), etc. are the singlet, pair, triplet, etc. 
potentials, respectively. Like the functions 1j! intro­
duced earlier, the rp's have the cluster property. The 
fundamental maximum principle states that in 
equilibrium the quantity 

00 1 J 10g3=S(1j!)+v~ln! 1j!([n))f([n))d[n] (43) 

is a maximum among all systems of molecular distri­
bution functions having the product property. In 
Eq. (43) S(1j!) is the expression for the entropy as a 
functional of the distribution functions derived by 
Nettleton and Green. l3 The functional S( 1j!) is naturally 
expressed in terms of a set of potentials of average 
force having the cluster property. Although the 
fundamental maximum principle in the form given in 
Eq. (43) is only valid for values of the 1j!'S correspond­
ing to single-phase states, we shall see, nevertheless, 
that it is very useful in describing phase transitions. 

Assuming functional differentiability of log 8 in the 
neighborhood of the values of the 1j!'S which corre­
spond to the maxima, these latter must satisfy the 

12 J. Willard GibbS, "Elementary Principles of Statistical Mechan­
ics," Collected Works of J. Willard Gibbs (Longmans Green and 
Co., Inc., New York), Vol. II. 

13 R. E. Nettleton and M. S. Green, J. Chern. Phys. 29, 1365 
(\958). 
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Euler equations fluctuation bV'[n] is proportional to 

(44),.:; 00 1 1 
.!:.exp - I -­

n.m~l n! m! 

Taking note of Eq. (27), we have 

-- = - L - rp(ln] (B [k])f([n] (B [k]) d[k]. bS 00 1 J 
bV'([n]) k~ok! 

(45) 
This equation may be solved for the cp's: 

1 00 (-1)kJ r'JS 
-cp([nD = f([V])k~ k! r'JV'([n + hD d[h]. (46) 

For any fixed cp's there may be several sets of values of 
the V"s which satisfy the Euler equations (45) or (46). 
Some of these may represent local maxima, while 
others may represent stationary points which are not 
maxima. Of these solutions to the Euler equations, 
the maximum principle picks out as the equilibrium 
solution the one corresponding to the largest local 
maximum. The value of log 3 corresponding to the 
largest local maximum is the logarithm of the grand­
partition function, i.e., f3PV, whereP is the equilibrium 
pressure. 

VI. DIRECT CORRELATION MATRIX: 
DEFINITION 

Taking a cue from the Ornstein-Zernike theory 
presented above, we may consider the quantity log 3 
to be a thermodynamic potential whose natural 
variables are the "1'( [v]). The probability of a fluctua­
tion r'JV'([v]) from equilibrium may then be considered 
to be proportional to exp (Lllog 3), where Lllog 3 is 
the change in log 3 corresponding to the bV"s. 
Recalling that the vanishing of the linear terms was 
our condition for equilibrium, Eq. (44), we have, up 
to terms of second order in the bV"s, 

Lllog 3 = n~~~l ~! ~! J bV'([n])bV'([mJ) 

b
2

10g 3 d[] d[ ] 
X bV'([nDbV'([mD m n 

= log3 -logS, (47) 

where S is the equilibrium and therefore maximum 
value of log 3 [compare Eq. (5)]. If we define the 
direct-correlation matrix to be 

b2 10g 3 
T([m], [n]) = - bV'([n])bV'([mD' (48) 

we may expect heuristically that the probability of a 

X J bV'([n])bV'([mDT([m], [nD d[m] d[n]. (49) 

Since Eq. (49) represents a generalized Gaussian 
distribution we expect, again heuristically, that the 
correlation matrix 

and the direct-correlation matrix 

T([m], [n]) 
are reciprocals. 10 

VII. TRANSFORMATION BETWEEN 
PHYSICAL POTENTIALS AND 

POTENTIAL OF AVERAGE FORCE 

In our discussion of the Ornstein-Zernike theory 
we pointed out that the direct-correlation function 
can be represented as the functional derivative 
bfl(x)fbp(x') , i.e., as the derivative matrix of the 
transformation between chemical potential and den­
sity [Eq. (3)]. Equation (48) represents a much more 
general transformation between the physical potentials 
rp([m]) and the potentials of average force V'([mD. 
The functional-derivative matrix of this transforma­
tion brp([mDjbV'([n]) is not, as might be expected 
from this analogy, the direct-correlation matrix. 
We will show, however, that the direct-correlation 
matrix is, nevertheless, very closely related to the 
derivative matrix of the transformation from cp's to 
V"s. 

If we take the first functional derivative of Eq. (43), 
we obtain 

blog3 = ~ + f 1..­
bV'([n]) b1p([nD k~O k! 

X J cp([n] (B [kJ)f([n] (B [kD d[k]. (50) 

In Eq. (45) the conditions for equilibrium in physical 
potentials rp are obtained hy setting the right-hand 
side ofEq. (50) equal to zero. We are also interested in 
nonequilibrium values of the V"s. We may, however, 
define physical potentials cp corresponding to these 
nonequilibrium values of the 1p'S through the equations 

-;: - = - I - fern] (B [k])cp([n] (B [kD d[k], (51) bS 00 J 1 
u1p([nD k~O k! 

where cp = cp when the V"s are the equilibrium 1p's. 
The cp's will be related to the V"s through the explicit 
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equation (46) with rp's substituted for qJ's. Substituting 
Eq. (51) in to Eq. (50), we obtain 

b log 3 = i: .l f{rp([n] ffi [kD - qJ([n] ffi [k])} 
b1p([nD k=O k! 

x f([n] ffi [kD d[k]. (52) 

Taking functional derivatives again we have 

b2 10g 3 

00 1 f + k~ k! (rp([n] ffi [kD 

- qJ([n] EEl [k])f([n] ffi [kD} d[k]. (53) 

Now the direct-correlation matrix is defined to be 
minus the second functional derivative of log 3 
evaluated for the equilibrium 1p's. For these 1p'S, 
qJ = rp and the second group of terms on the right 
vanish. Thus we have 

T([m], [nD = ~ f.lfd[k] bqJ([n] ffi [kD f([n] ffi [kD, 
k=O k! b1p([mD 

(54) 

where we have dropped the bar on the qJ's under­
standing these to be related to the 1p'S through Eq. (46). 
In spite of the apparently asymmetric form of the 
right-hand side, we know from its definition that Tis 
symmetric in [m] and [n]. 

VIII. GENERALIZED ORNSTEIN­
ZERNIKE RELATION 

In Ref. 6 it was pointed out that the relationship 

~ _1 f <5qJ([m]) b1p([n'D d[m] = b([n], [n']), (55) 
n=O m! b1p([nD bqJ([m]) 

expressing the fact that the derivative matrices of the 
transformation from qJ's to 1p's and from 1p'S to qJ's are 
reciprocal, can be considered to be a generalization 
of the Ornstein-Zernike integral equation. In the 
analogy presented there, b1pjbqJ was the analog of the 
direct correlation function, Eq. (10), while bqJjb1p was 
the analog of the correlation function Eq. (8). 

In this section we will show that Eq. (55) can be 
transformed into a relationship between the direct­
correlation matrix and the correlation matrix. Indeed 
we will demonstrate the statement that was proposed 
heuristically above: that these two matrices are 
reciprocal. In appendix A, it is shown that the first 
and second functional derivatives of the functional 

of log §.( qJ), which is the maximum value of the 
functional log 3(1p, qJ) for fixed qJ, are respectively: 

b log 3jbqJ(m) = f([mD, (56) 

b2 10g 3jbqJ([n]bqJ([mD = r([n], [mD, (57) 

where r is defined above in Eq. (22). Thus we may 
write 

bf([nD = r([n], [mD. 
bqJ([mD 

(58) 

Now the left-hand side of Eq. (58) may be easily 
written in terms of b1pjbqJ while the right hand side 
may be written in terms of 

G([m], [nD == (b1p([mDb1p([n]». 

Differentiating Eq. (27) and using Eq. (31), we obtain 

Thus we have 

b1p([nD = f([m]) I G([,u], [n]). (60) 
bqJ([mD [Il]<;:[m] 

Returning to Eq. (55), we have 

i: ~ fd[m] bqJ[m] f([mD I G([,u,], [n']) 
m=om! b1p[n] [Il]<;:[m] 

= b([n], [n'D. (61) 

If we break up the set [m] into sets [,u] and [k], we 
note that, for fixed ,u and k, 

i: .l fd[,u][ I .l fd[k] bqJ([,u] ffi [kD f([,u] ffi [kD] 
1l=1,u! k=O k! b1p([nD 

x G([,u], [n']) = b([n], [n'D. (62) 

The expression in square brackets is nothing else than 
T([n], [,uD, Eq. (54). Equation (62) simply states 
that the matrixes T and G are reciprocals. 

~1 ;! J d[,u]T([n], [,uDG([,uHn']) = b([n], [n']) (63) 

We take Eq. (63) to be the appropriate generalization 
of the Ornstein-Zernike integral equation. 

IX. DIRECT·CORRELATION MATRIX: 
PROPERTIES 

If the generalized Ornstein-Zernike equation were 
the only result of the present approach we would have 
very little hope of going beyond the classical theory. 
It is possible, however, to derive at least for two-body 
forces a formula for the direct-correlation matrix 
from which a number of important properties can be 
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established. These properties make the direct-correla­
tion matrix a much better known mathematical object, 
especially in its asymptotic properties, than the direct­
correlation function of the Ornstein~Zernike theory. 

In Appendix C we derive the following formula for 
T([m], [n]) for the case in which the cp's are zero for 
11 greater than two: 

T([m], [n]) = 2: J([m] U [n])o([t3], W]) 
O'=.[Pl'=.[m] 
o~[{n~[n] 

x 2: (-l)~+~'exp - .L cp(i, j) (64) 
O~[.]~[rii] iE[~] 

O~[a']~[n] ;E[a'] 

where [In] = [m] - [m] n [n], 

[ti] = [n] - [m] n [n], 

and where, in case [t3] or [P'] or both are empty, the 
exponential is to be replaced by unity. . 

First of all we note in Eq. (64) that each element of 
the matrix is given by a finite number of terms involv­
ing the physical potentials and distribution functions. 
This is in contrast to the direct-correlation function 
in the Ornstein~Zernike theory for which there exist 
several expressions in terms of /,s and cp's which are, 
however, infinite series. Since log 3 is a maximum for 
equilibrium, T([m], [n]) is a positive-definite matrix. 

Secondly, whenever any single point j of the set [n] 
is so far from each point of the set [m] that all physical 
pair potentials are zero, T([m], [n]) is zero. This fact 
is proved in Appendix C. This means that T([m], [n]) 
is zero unless all parts of the set [n] are within the 
range of pairwise forces of a part of [m] and vice versa. 
This is analogous to a property of the correlation 
matrix G([m], [n]) [Eq. (32) et seq.]; i.e., for a 
nonzero value for G, all parts of [m] must be close to a 
part of [n] within a range determined by the product 
property oj the f's. With respect to the distance 
between the sets [m] and [n], T([m], [n]) is short 
ranged with a range which is independent of the 
thermodynamic state. This is in contrast to the direct­
correlation function which seems to become long 
ranged at the critical point 

T([m], [n]) -- 0, (65) 

when the distance between [m] and [n] is larger than 
the range of intermolecular forces. 

Thirdly, when the sets [m] and [n] are each divided 
into two widely separated parts [m'], [m"] , and 
[n'l, [n"], respectively, T([m], [nD breaks up into a 
product 

T([m'] E8 [m"], [n'] E8 [n"D--

T([m'], [n'])T([m"], [n"]). (66) 

This property is also proved in Appendix C. The 
distance between the sets [m'] and [m"], [n'] and [n"] 
for Eq. (66) to be valid is the range of correlations 
not the range of forces. 

X. PERCUS-YEVICK EQUATION 

At this point it is worth while to note that if the 
expression for T([m], [n]), given by Eq. (64), is 
inserted into the generalized Ornstein~Zernike equa­
tion, Eq. (63), the result is a self-contained and explicit 
matrix relationship between the distribution functions 
and the physical potentials. This is in contrast to the 
classical Ornstein~Zernike integral equation, which is 
basically a relationship between two unknown 
functions. 

Several approximate integral equations for the 
correlation functions have been derived by inserting 
appropriate approximate formulas for the direct­
correlation function in the Ornstein~Zernike theory. 
It is an interesting fact that the most successful of 
these, the Percus~ Yevick equation,14 can be "derived" 
very naturally in the context of the expression, Eq. 
(64), for the direct-correlation matrix. Indeed, if we 
specialize Eq. (64) to the case m = n = 1, we obtain 

T(I, I') = f(l)o(I, I') + f(I, I')(exp - cp(I, I') - I). 

(67) 

This is just the approximation to the direct-correla­
tion function which gives the Percus~ Yevick eq uation. 
From Eqs. (22) and (32) we find that 

G(1, If) =_1 b(11') + ( J(11') - I). (68) 
J(1) J(1)J(1') 

Eq uation (63) then becomes the Percus~ Yevick 
equation, if all other elements of T([m], [n]) are set 
equal to zero, or, less drastically, if all elements 
T(l, [mD are set equal to zero. 

XI. PHASE TRANSITIONS 

In the previous paragraphs we have discussed 
situations in which log 3 has a unique maximum in the 
neighborhood of which it may be expanded in a 
functional-power series in the o1jJ's. The equilibrium 
state in this case is a single phase. It may happen that 
two local maxima are equal, i.e., that for the same set 
of cp's, two different sets of 1jJ's correspond to equal 
local maximum values of log 3. For this case a small 
change in the cp's, that is to say a small change of 
external conditions, will only slightly change the 1jJ'S 

14 J. K. Percus, Phys, Rev. Letters, 462 (1962); The Equilibrium 
Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, Eds. 
(W. A. Benjamin, Inc., New York, 1964), Vol. II, pp. 33, et seq. 
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corresponding to each of the local maxima, but will 
make one or the other set the one which corresponds 
to the absolute maximum of log 3. Thus a small change 
of ({J's will cause a finite change in the equilibrium 'ljJ's. 
This is a first-order phase transition. 

Let us consider the entropy S('ljJIJ, S('ljJr:) for the 
two phases in thermodynamic equilibrium. If we 

denote by log E the common value of log E for the 
two phases, say liquid and gas, the two functionals of 
the 'ljJ'S, S('ljJ) and 

- 00 I f log 3 - n~l n! ((J([n])f([n» d(n] 

are equal, both for 'ljJ = 'ljJ L and 'If' = 'ljJa. This is a 
consequence of the equality of the local maxima and 
of a rearrangement of Eq. (43). Equation (45) in its 
turn states that the functional derivatives of these two 
functionals are equal for all equilibrium states and in 
particular for 'ljJL and 'ljJa. Thus the surface 

S = S('ljJ) (69) 
and the surface 

S=log3-n~1~!f ((J([n»f([n))d[n) (70) 

are doubly tangent, once at 'ljJ = 1p /, and once at 

'ljJ = "Po· 
We see that the fundamental maximum principle, 

when expressed in terms of the potentials of average 
force, yields a picture of a first-order phase transition 
which is very analogous to the Gibbs picture referred 
to in the Introduction. Tn the Gibbs picture,3 the 
quantity 

(71) 

is a maximum for fixed P and T considered as a 
function of E and V. A first-order phase transition 
corresponds to two equal maxima of this quantity. 
If G is the common value of G for the two maxima, 
the surface 

S = SeE, V) (72) 

and the plane 

S = G + E + PV 
T 

(73) 

are doubly tangent at the points (E L' V L) and 
(Eo, Va) corresponding to liquid and gas respectively. 
The points on the line joining (SI" EI, • VL ) and 
(So. Eo, Vu), 

({XSI, + (1 - X)Sd, (XEI, + (1 - X)Ed, 

(XVI, + (1 - X)Vu»), 

o ~ X ~ 1, are also equilibrium points correspond-

ing to the coexistence of the two phases in the propor­
tion of X to I-X. The states of equilibrium belong 
to the convex hull of the surface S(E, V). Those 
points which lie on SeE, V) itself are single phase 
points. Those which lie on planes multiply-tangent 
to S(E, V) correspond to several phases in equilibrium. 

It has been shown15 that the distribution function 

f([nD = XfI,([n]) + (1 - X)fu([n]) (74) 

corresponds to the coexistence of liquid and gas. 
We may assume that equilibrium states correspond 
to the convex hull of the surface S('ljJ) in the space of 
molecular-distribution functions. Distribution func­
tions of the form Eq. (74), corresponding to the 
coexistence of several phases, do not have the product 
property. 

XII. THE CRITICAL POINT AND THE 
CRITICAL EIGENVECTOR 

In the Gibbs picture it may happen that as the 
doubly tangent plane rolls on the entropy surface the 
points of contact approach each other until they 
coalesce. This means that the characteristics of the 
liquid and gas phases approach each other and become 
identical at the critical point. This picture of the 
critical point has a very close analogy in the present 
formalism. It may happen that as the external param­
eters contained in the ({J's are varied, the set of 
distribution functions and the potentials of average 
force corresponding to the liquid fI" 'ljJ L and the sct 
corresponding to the gas fa, 'ljJo become identical. 
Such a set of values is the critical point. 

In the neighborhood of the critical point, the behav­
ior of the functional log 3 is given by the quadratic 
form, Eqs. (47) and (48). It is easy to make plausible 
that at the critical point the matrix T([m], [n]) will 
have an eigenvector with eigenvalue zero and the 
"surface" described by log 3 as functional of the 'ljJ's 
is cylindrical at the critical point. Let us consider, with 
fixed intermolecular potentials, the change in the 
potentials of average force which take place when the 
density of the system is changed, keeping the tempera­
ture constant and equal to To. The compressibility 
is infinite at the critical point which implies that 

(Of-l) = (O({J(l») = 0 
op T op T 

(75) 

at To, i.e., o({J(l) = 0 in such a displacement. At the 
same time, since the temperature and intermolecular 
potentials are constant, we have 

(76) 

15 M. E. Fisher, J. Math. Phys. 6, 1643 (1965). 
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n > 1. In such a change the b1p([n]), n > 1, will also 
change. The two sets of changes will be related by the 
derivative matrix 

brp([n]) =! ...L f brp([n]) b1p([mD d[m]. (77) 
m=l m! b1p[m] 

For n = 1 the left-hand side of Eq. (77) will be zero 
because the inverse compressibility is zero. For 
n > 1, the left-hand side of Eq. (77) is zero because 
then the rp[n] are constant along an isotherm. If we 
divide the isothermal changes b1p([nD, n> 1, by 
b1p(l) = bpI p, assuming the limits exist, the vector 
b([m]) with components 

b(l) = 1, 

b1p{l2) I b(12) = P-
b 

- , 
p T=T(J (78) 

b(123) = P b1p(123) I 
bp T=T(J 

is an eigenvector of the matrix b1p([mD/brp([n]), with 
eigenvalue zero 

o = i ~ f brp([n]) b([m]) d[m]. (79) 
n=lm! b1p([mD 

Ifwe replace [n] by ([m] ffi [h]) in Eq. (79), multiply 
by fern] ffi [hD, integrate, and sum, we obtain 

o = i ! ~ ~ ff([n] ffi [hD btp([n] EEl [h]) 
h=O m=l m! h! b1p([mD 

X berm]) d[m]. (80) 

Noting Eq. (54) and the symmetry of T([m], [nD, we 
have 

<Xl 1 f 0= II m! T([n], [m])b([m] d[m]); (81) 

i.e., b([mD is an eigenvector of T([m], [nD with 
eigenvalue zero. 

In the Gibbs picture of phase transitions the 
boundary of the two-phase region does not represent a 
locus of singularities of the single-phase E, S, V 
surface, but simply the locus of the points of tangency 
of a double tangent. Gibbs also assumed the existence 
of a locus of incipient mechanical instability, i.e., a 
locus of infinite compressibility on the single-phase 
E, S, V, surface which lies in the interior of the 
equilibrium E, S, V surface except at the critical point. 
By the above argument, the matrix T([m], In]) will 
have an eigenvector with zero eigenvalue at every 
point of this locus. Without committing ourselves 
either favorably or unfavorably to this aspect of the 
Gibbs picture, we may make a further characterization 

of the critical point and of the eigenvector with zero 
eigenvalue which corresponds to it. 

Let us consider the differences 

Lltp([mD = 1pL([mD - 1pG([mD (82) 

on the phase boundary. These must approach zero as 
the critical point is approached since the properties 
of the liquid and the gas become identical at the 
critical point. As we have pointed out above, the tp's 
corresponding to the liquid and gas sides of the 
coexistence boundary are identical. The Lltp's thus 
represent a displacement of the 1p'S corresponding to 
no change in the rp's. It is not unreasonable to suppose, 
therefore, that as the critical point is approached, the 
Ll1p([mD's become proportional to the eigenvector 
b([mD of T and that 

lim Lltp([m]) = b1p([m])1 = b([mD. (83) 
T-Tc Ll1p([1]) b1p(l) T=Tc 

The critical point is thus characterized by the 
existence of a eigenvector with eigenvalue zero of 
T([m], [n]), which we might call the critical eigen­
vector. The. critical eigenvector berm]) plays the 
following three roles in the theory: (l) Displacements 
in the potentials of average force proportional to 
b([mD produce no change in log 2: and, according to 
the heuristic principle expressed in Eq. (49), fluctua­
tions proportional to berm D are exceptionally probable. 
(2) Displacements proportional to berm]) imply no 
changes in the physical potentials or the chemical 
potential or the temperature. (Or the pressure since 

log S = PV/kT.) (3) The differences in the potentials 
of average force between liquid and vapor phase are 
proportional to b([m]). 

XIII. PROSPECT 

The definitions and properties of the correlation 
matrix and direct-correlation matrix, the generalized 
Ornstein-Zernike equation relating them, the gener­
alization of the Gibbs picture of phase transitions and 
points, and the existence of a critical eigenvector 
constitute the elements and principles out of which we 
hope to construct a theory of critical phenomena. 
We do not do so in this paper. In order to give some 
motive, in the absence of concrete results, for the 
rather involved formalism of the present paper we 
wish to show how the above elements and principles 
might fit together to form a theory of critical phenom­
ena. 

First of all, we do not prove the existence of a 
critical eigenvector in the present paper but merely 
give a plausible argument. It is possible, albeit with 
considerable difficulty, to test the hypothesis of the 
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existence of a critical eigenvector for the two-dimen­
sional Ising model. In this case it is appropriate to 
consider the averages 

«(1i(1; ••• (11) ± , 

where ijl represent a set of lattice sites, (1i' •• (11 the 
corresponding spin variables, and ± refer to values 
on the two sides of the coexistence line. The differences 

«(1i' •• (11)+ - «(1i' •• (11t 

will vanish for an even number of spins, and will be 
equal to 

2«(1i' •• (11)+ 

for an odd number of spins. The question to be 
decided is: do the limits 

exist as the critical point is approached from below.16 

Since the relevant averages can be evaluated in 
principle from the Onsager solution, the question 
should be answerable at least for averages of a few 
spins. To verify the existence of a fundamental 
eigenvector and to determine its properties, especially 
asymptotic properties when groups of molecules are 
widely separated, would make an important contri­
bution to the present program. 

Secondly, just as in the Ornstein-Zernike theory, 
significant fluctuations are determined by the small 
eigenvalues of the quadratic form, Eq. (5), i.e., by 
small values of I - pt(k), it is reasonable to expect 
that in the generalized theory significant fluctuations 
will be determined by small eigenvalues of the quad­
ratic form, Eq. (43), i.e., by small eigenvalues of the 
direct-correlation matrix T([m], [n]). It appears, 
although we will not expand further on this point here, 
that the general properties of T([m], [n]) proved 
above, especially those expressed in Eqs. (65) and (66), 
give a rich structure to these low-lying eigenvalues 
and eigenfunctions and therefore, to the significant 
critical fluctuations in the potentials of average force. 
Once the nature of these significant critical fluctuations 
are understood, the critical behavior of such thermo­
dynamic properties as specific heats and compressi­
bilities can be determined through equations such as 
Eq. (41). 

Finally, the generalized Ornstein-Zernike relation, 
Eq. (63), when the expression (64) is inserted for 

16 R. B. Griffiths has shown (private communication) on the basis 
of inequalities proved by himself, Kelly and Sherman that for a 
ferromagnetic Ising system the ratios (a 1 ' •• a,)/(a1 ) are bounded 
above and below; R. B. Griffiths, J. Math. Phys. 8, 478 and 484 
(1967). O. G. Kelly and S. Sherman (unpublished). 

T, is a nonlinear relationship for the elements of the 
correlation matrix G([m], [n]). By Eqs. (67) and (68), 
this is a generalization of the Percus-Yevick equation 
for the pair-correlation function. As the critical point 
is approached, G([m], [n]) will become long-ranged 
when the groups of molecules [m] and [n] are sepa­
rated. By Eqs. (31) and (22), the distance for the prod­
uct property to become valid also becomes long. Thus, 
by Eq. (64), the distance for the product property of T 
Eq. (66) to become valid is long. Presumably not 
every asymptotic behavior of G([m], [n]) is compatible 
with the generalized Ornstein-Zernike equation. We 
may, therefore, hope to determine the asymptotic 
behavior of G([m], [n]), and therefore, of all relevant 
quantities by an appropriate analysis of the generalized 
Ornstein-Zernike equation when T has a small 
eigenvalue. The structure of eigenvalues and eigen­
vectors of T will clearly be an important part of the 
analysis. 

APPENDIX A 

It is the purpose of this appendix to derive Eqs. 
(22), (56), and (57) of the main text. Consider then a 
phase function 

A([mD = 2 a([,uD, (Al) 
[1l]S[m] 

B([n]) = L b([v]), (A2) 
[v]S[n] 

where the a([,u]) have the cluster property. The 
product A([m])B([n]) may be written 

A([mDB([nD = 2 2 a([,uDb([vD 
[v]S [n] [1l]S [m] 

L L a([,uDb([v]), (A3) 
[n]S[m]v[r>,] [Il]v[v]~[n'] 

where the second equation is obtained from the first 
by summing over all subsets [v], [,u] whose union 
equals a fixed set [n'] and then summing over [n']. 
Using Eq. (19), we have 

(AB) = L.l ff([n])[ L a([,u]b([V])] d[n]. 
n! [Il]v[v]~[n] 

(A4) 

Since we integrate over all particles of the set [n], 
there will be many terms which will give the same 
contribution to the integral. If we write 

[A] = [,u] n [v], 

[,a] = [,u] 8 [A], 

[v] = [v] 8 [A], 

(A5) 

there will be (n!j,a! ii! A!) terms in the sum in Eq. (A4) 
corresponding to each choice of the numbers ,a, ii, A. 
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We have, therefore, 

(AB) = __ I :, ~ ~ ff([,u] EB [iiI EB [AD 
l',v,J.~0ft. v. A. 

x a([,u] EB [ADb([v] EB [AD d[,u] d[ii] d[A]. (A6) 

If we introduce the delta function defined by Eq. (23), 
we may rewrite this as 

(AB) = __ I ! , ~ ~ ~ ff([,u] EB [iiI EB [AD 
I',V.J.,K=0ft. v. A. K. 

x ~([A], [K])a([,u] EB [A])b([ii] EB [K]) 

x d[,u]d[ii] d[J.] d[K]. (A7) 

This in its turn may be rewritten as 

co 1 1 f 
(AB) I'~l ft!;! f([t-t] U ['I'D 

x ~ ~([A], [KDa([ft])b([vD dLu] d[v], (A8) 

since the 

[)']S[I'] 

[K]S [v] 

terms in the sum in Eq. (A8) are equal in value and 
cor.respond to one term in Eq. (A 7), and since 
[,u] EB [iiI EB [A] is the same as [t-t] U [v] when the set 
[A] coincides with the set [K] as required by the delta 
function. We note finally that 

«A - (A»(B - (B») 

= (AB) - (A)(B) 

- f([t-t], ['I'D }([ft])a([v]) d[t-t] d[v]. (A9) 

Equation (9) is equivalent to Eqs. (21) and (22). 

To derive Eqs. (56) and (57), we note that 3 is the 
grand-partition function and, therefore, may be 
written as 

3 = L - exp ~ 1P([v]) d[n]. - co I J 
n=O n! [v]S [n] 

(AIO) 

If we vary the IP'S, the linear terms in the variation of 

log :3 are 
be 00 1 

~log:=: = :: = ~ -J ~ ~1P([v]) 
I:. n~O n! [v]S [n] 

X exp ~ 1P([ii]) d[n]. (All) 
[v]S[n] 

If we write [n] == [v] EB [v'] and note that for every 
choice of v, 0 < v < n, there are n !{v! v'! equal terms, 

we have 

00 1 f ~ log ~ = v~:;! ~1P([v ])f([v]) d[v], (AI2) 

where 

f([v])=;;:~ -;-;exp ~ 1P([k])d[v'] (A13) 1 00 J 1 
Co v~O V. [k]S [V](j)[V'] 

is the grand-canonical expression for the molecular­
distribution functions. Eq. (56) then follows immed­
iately from Eq. (AI2). 

The second-order terms in the variation of log 3 
are 

~2 log ~ = ~:~ _ (~:)2 = ~ I -1 
~ ~ ~ n=l n! 

xI ( ~ ~1P([V,]))2 exp ~ IP([V]) d[nJ 
[v']S[n] [v]S[n] 

- ;;: L - L ~1P([v']) exp ~ 1P([v]) d[(n)]. 1 co 1 I 
.!:. n=l n! [v']S [n] [v]S [n] 

(AI4) 
If we define a sum function 

~U[n] = ~ ~1P(v), (AI5) 
[v]S [n] 

we may write 

~210g 3 = (~U([VD2) - (~U[n])2, (AI6) 

where the brackets mean average in a grand-canonical 
ensemble. By analogous transformations to those 
leading to Eq. (A9), we may write 

00 III ~210g~ = n~~~l n! m! ~1P([m])r([m], [n]) 

X ~1P[n] d[m] d[n], (AI7) 

where r([m], [n]) is defined by Eq. (22) and every­
where grand canonical distribution functions are 
meant. Equation (AI7) implies Eq. (57). 

We close this appendix by giving the following 
representation for ~([oc][oc'D: 

~([oc'][oc]) = ~ ~(il' 1)·" ~(ia'oc), ifoc = oc', 

= 0 otherwise (A18) 

where ~(i,j) is the single-particle delta function and 
iI, ... , ia is a permutation of the symbols I' ... oc', 
and the sum is over all permutations. This expression 
may be used to demonstrate a formula needed to 
derive Eq. (B9): 

00 1 I p~o (3! h([oc] EB [(3])~([oc] EB [(3], [y]) d[(3] 

~ h([oc] EB [y'])~([oc], [y"]), (A19) 
[y'](j)[y "]~[y] 

where h([v]) is an arbitrary sequence of functions. 
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APPENDIX B 

The purpose of this appendix is to derive the formula 
for T([m], In]), given in Eq. (64), from the expression 
for T([m], In]), given in Eq. (54). In doing so we make 
use of a reciprocal relationship between the molecular 
distribution functions JOn]) and the functions 1]([n]) 
defined by 

1]([n]) = exp I cp([v]) (Bl) 
[v]S[n] 

Referring to Eqs. (27), we see that the 1]'s are related 
to the cp's in the same way that theJ's are related to the 
1p's. Equation 31 may be inverted to give 

cp([n]) = I (-l)n-V log 1]([v]). (B2) 
[v]S[n] 

The reciprocity between the 1]'s and the f's is expressed 
in the following two formulas: 

S-1 = I - (-1)" f([n]) din], - <Xl 1 f 
,,=0 n! 

(B3) 

which is to be compared to Eq. (AIO), and 

S-I1]([V]) =vt V~! (- It'Sf([V] EB [v']) dry'], (B4) 

which is to be compared to Eq. (AI2). The derivation 
and background of these relationships are given, for 
instance, in Ref. 17. 

If in Eqs. (B4) and (B3) we express the f's in terms 
of the 1p'S through Eqs. (27), we may compute the 
functional derivative of the 1]([m]) with respect to 
1p([n). In analogy to Eqs. (22) and (AI6), we obtain 

(_I)mb1]([m]) = I (-lim]U[n]1]([m]U[n]) 
b1p([n]) OS[K]S[m] 

os [K']S [n] 

X b([K], [K'D - (-l)m+m1]([m])1'}([n]). (B5) 

Taking the functional derivative of Eq. (B2) with 
respect to 1p([m]) and substituting Eq. (B2) into 
Eq. (54), we have 

<Xl 1 j T([,u), [m]) = ~o K! d[K]f([,u] EB [K]) 

X I ( -W'+K-). _1_ b1]([A]). (B6) 
[),]£[p](f)[I(] 1]([A]) b1p([m]) 

The summation is over all sets [J.] included in 
[,u] EB [K]. The set [A] will thus be the sum of two sets 
[v] s; [,u] and [iC] S; [K]. If we call [iC'] the compli­
mentary set to [iC] in [K], the variables of [iC'] are 
contained only among the arguments of J and not 
among the arguments of 31]/i)1p. Thus, we may carry 

17 M. S. Green, Lectures in Theoretical Physics, Vol. Ill, W. E. 
Britten, B. W. Downs, and J. Downs, Eds. (Interscience Publishers 
Inc., New York, 1961), p. 195. 

out the integration and summation over riC'] keeping 
[K] and all other variables fixed. Since the variables 
of [K] are dummy the value of the integral will 
depend only on the number of variables in [K] and 
[K']. There will be K!/(K! iC'!) such terms which have 
the same value. Noting Eq. (B4), we obtain 

T([,u], [m]) = 3-1 ~..l fd[iC] 
o iC! 

X I ( _ 1 ),,-v 1]([,u] EB [iC]) b1]([v] EB [iCD (B7) 
OS[v]£[p] 1]([v] EB [iC]) b1p([m]) 

Like Eq. (54), the representation of T([,u] , [m]) 
given by Eq. (B7) is not manifestly symmetric. We 
will obtain a manifestly symmetric representation of 
T by eliminating the b1]lb1p through Eq. (B5). We 
obtain 

T([,u], [mD = 3-1 ! ~ jd[K] I (_I)"-V 
o K! O£[v]S[p] 

X b([O(], [O('])1]«[V] EB [K]) U [m]) 

- ( -I)"n([vl Ell [.IM[m nj. (B8) 

We note that, owing to its independence of the set [v], 
the sum over the second term in the brace is 
zero. We consider then a particular term in the first 
summation; i.e., a particular choice of the sets [v], 
[ex], [0('], [K] which satisfies the conditions of the 
summation. The set [0(] will have a part [11] S; [v] 
and a part [y] S; [K]. Since they are involved in the 
delta function, the integration over the variables [y] 
can be carried out immediately, leaving the integration 
over riC], the complimentary set of [y] in [K]. This 
integration will identify [,8] with a subset [0('] of [m]; 
i.e., we must replace the set [K] by [iC] EB [y'] where 
[y'] is a subset of [m]. Since the variables of [K] are 
dummy, there are K!/(y! iC!) terms in the sum which 
will have the same value. Using Eq. (AI8), we obtain 

T([,u], [mJ) = 3-1 i: ..!. fd[K] I 
OK! os [P]S [v]S [p] 

os [P'](f)[Y']£ [m] 

X (_l)P-v+[([V](f)[V'](f)[I(]lu[m]]-([v](f)[Y'](f)[K]l 

X b([,8], [,8']) 

1]([,u] EB [y'] EB [K])1'J(([y] EB [y'] EB [K]) U [m]) 
X . 

1'J([v] EB [ex'] EB [K]) (B9) 

We may express Eq. (89) in a symmetJ:ic form by 
noting that the delta function implies that a particular 
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term contributes only when the set of variables un 
is coincident with the set of variables [~']. Since [p] 
is a part of [,u] and [f] is a part of [m], this means that 
the sets of variables [,u] and [m] must be partially 
coincident. We may assume that the set [~] == [/1'] 
is also identical to the intersection [,u] (\ em], since 
the coincidence of any of the variables of [,u] and [m] 
not involved in the delta function will not give rise 
to a contribution. If we write [y] for the complement 
of [f3] in [v], we may express the set ([v] CD [(n EB 
[K]) U [m] as 

([f3] EB [y] EB [y'] ('9 [K]) U em] == [y] EB [m] EB [K], 

since [f3] and [y'] are included in [m], and [y] and [K] 
are disjoint from em]. Thus we have 

- 00 1 
T([,u], [m)) = 3-1 I I -

[p]S[m] 0 K! 
[P']S[Jl] 

xjd[K] I (-ly+m- y
-

y'o([{3], [If]) 
os [y']S [rn] ~~[m] n[/1] 
os [y]S [JlL[m]n[/1] 

x 'YJ([,u] EB [y'] EB [K))'YJ([m] EB [y] EB [K]). (BIO) 
'YJ([m] (\ [,u] EB [y'] EB [y] EB [KJ) 

Equation (BIO) is the manifestly symmetric form of T 
which we have sought. 

We will make one further transformation, which in 
contrast to Eq. (BIO) will express each matrix element 
of T as a finite sum of terms. From this form it will be 
possible to make positive statements about the 
behavior of T([m], [,u]) when subsets of the particles 
em] or [,u] are separated from the rest. This will be 
done in Appendix C. At a certain stage in the trans­
formation, the calculations will be much simplified, 
if the f( [v]) are assumed to vanish if the set [v] contains 
more than two members. This is an inessential 
restriction which merely simplifies the calculations. 

We note first that in Eq. (B1O) we have to do 
repeatedly with expressions of the form 

'YJ([A))'YJm)) 

'YJ([A] (\ [~J)' 
(B11) 

where [A] and [~] are sets which have common 
elements. In Eq. (BIO), [A] corresponds to [,u] EB 
[y'] EB [K] and [~] to em] ('9 [y] EB [K], while [A] (\ [~] 
corresponds to [m] (\ [,u] EEl [y] EEl [y'] EEl [K]. Let us 
write 

'YJ([A)) = I TI<D([v)), 
Up.] 

'YJ([m = I TI<D([v]), (B12) 
(1m 

'YJ([A] (\ [m = I TI<D([v]) , 
G [A]n[gJ 

where 1 + <D( [v]) = exp !PC [v]) and in each case the 
product is over a collection G[i.] of subsets [v] of [A] 
and the sum is over all distinct collections of subsets 
G[iJ such that no subset is repeated. The product 
'YJ([A])'YJ([m will be a sum of products over collections 
of subsets of the union [A] U [~] in which each subset 
belongs entirely to [A] or entirely to [,u], but some 
subsets of a collection may be repeated. Those subsets 
which are repeated belong entirely to [A] (\ [~]. If 
we now consider the sum over products of collections 
of subsets of [A] U [~], none of which are repeated, and 
each of which belong entirely either to [).] or to [~], 

we obtain a product belonging to 'YJ [A.]'YJ [~] after multi­
plying a term in the sum over product by a product 
over a collection of unrepeated subsets of [A] (\ [n 
Thus we have 

'YJ([A]'YJ([m = 'YJ([A] (\ [m I TI<D([v]), (B13) 
Ii 

where G is a collection of subsets of [A] U [~] such 
that each subset is contained wholly either in [A] or in 
[~] and no set is repeated. Therefore, 

'YJ([A))'YJ([m = I TI<D([v)), 
'YJ([A] (\ [m Ii 

where G is as specified above. 

(B14) 

Since G is a collection of subsets of [A] U [~] 
it is possible to write another formula for 

n([A])17([~]I'YJ([A] (\ em. 
By similar argument to the one by which Eq. (B 14) was 
derived, we may write 

'YJ([A])'YJ([m 

'YJ([A] (\ [~] 

'YJ([A] U [m 
1 + I TI<D([v])' 

(/' 

(BI5) 

where G' is the collection of subsets of [A] U [~] 
such that no subsets are contained in entirety in either 
[A] or in [~]. Every such subset will contain members 
of [A] not in [~] and members of [~] not in [A]. Now 
in the special case of pairwise forces, i.e., when 
!p([v)) = 0, if v is greater than two, the collection of 
sets G' is simply the collection of all pairs of points: 
one belonging to [X] == ([A] 8 [A] (\ [~] and one 
belonging to [~] == [~] 8 [A] (\ [~]. Still, under the 
assumption of pairwise forces, the denominator in 
Eq. (BI5) can be written as 

1 + I II<D([v]) = 'YJ([~] U [~]) ; 
U' 'YJ([A])'YJ([m 

i.e., in the case of pairwise forces we have 

'YJ([}'])'YJ[m 
'YJ([A] (\ [~]) 

'YJ([X]'YJ([~))'YJ([A] U [m 
'YJ([A] U [t]) 

(BI6) 

(BI7) 
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Returning now to Eq. (BIO) we define 

[m] = [m] 8 [m] n [,u], 

[,a] = [,u] 8 [m] n [,u]. (BI8) 

By Eq. (BI7), we may write the products of the r)'s on 
the left in Eq. (B 10) as 

1]([,a] 8 [Y])1]([m] 8 [y'D x 1]([m] U [,u] ffi [K]). 
1]([,a] ffi [y'] ffi [m] ffi [y']) 

(BI9) 

Substituting this expression into Eq. (BIO) and noting 
that the appearance of [K] in only one of the 1]'s in 
Eq. (BI9) permits the summation over K to be carried 
out and that summation over [y] and [y'] can be 
replaced by summation over 

[,a] - [y] = [C"!:], [m] - [y'] = [C"!:'] , 

we obtain 

T([/t], [m]) = I 15([/1], [/1']) 

where 

OS[p]S[m] 

OS[P']S[Il] 

x 0([m], [,a]f([,u] U [m]), (B20) 

0([,u], [m]) = I (-lr~' 1]([C"!:])1]([(l']). (B21) 
os [~]S [m] 1]([C"!:] ffi [(l']) 
OS[~']S[Il] 

Since we are assuming pairwise forces 

[Pairs i, j, which are contained wholly in [C"!:] or 
wholly in [C"!:'], are removed by the factors 1]([C"!:], 
1]([C"!:']).] We have 

0([m], [,u]) = I (-It+~' exp - I <p(ij). 
oS [~]S [m] iE[~] 
oS [~']S [Il] jE[~'] 

Equations (B20) and (B21) together yield Eq. (64). 

APPENDIX C 

It is the purpose of this appendix to demonstrate 
the two asymptotic properties of T([m], [nD expressed 
in Eqs. (65) and (66). We do this by first demonstrating 
analogous properties of 0([m], [n]). Suppose, refer­
ring to the definition of 0([m], [nD, Eq. (B21), that 
there is a point in [m] which is distant from all points 
of [n], i.e., for which all factors rp(i,j), j E [n], i fixed, 
are zero. The sets [C"!:] can then be divided into two 
classes, those which contain i and those which do not. 

These two classes of sets can be put into one-to-one 
correspondence by pairing a set [C"!:] not containing i 
to the set [C"!:] ffi i. The empty set corresponds to set 
containing i alone. For a given choice of [C"!:'] each of 
the paired sets will have the same value of the expo­
nential but opposite signs of the factor (-1)~+~'. 

Thus 0([m], [n]) will be zero in this case. 

0([m], [nD = 0, (Cl) 

if any point of [m] is distant from all points of [m]; 
i.e., 0 will be different from zero only if every point of 
[m] is close to some point of [n] and vice versa. 

Let us suppose, on the other hand, that all points of 
[m] are close to some point of [n] and vice versa but 
[m] == [,u] ffi [v], and [n] == [,u'] ffi [v'] with [,u] 
far from [,u'], and [v] far from [v']. Then, in Eq. 
(B21) every set [C"!:], [C"!:'] will be broken into two parts, 
[C"!:] == [/1] ffi [y], [(l'] == [/1'] ffi [y'], one of which may 
be empty, such that 

[/1] S; [,u], [/1'] S; [,u'], 

[y] S; [v], [y'] S; [v']. (C2) 

The factors exp - <p(ij) 'Yhere i lies in [/1] and j 
lies in [y'] or i lies in [y] and j lies in [/1'] will be unity. 
The remaining factors can be grouped into two 
products of the same form. We have 

0([m], [nD = 0([,u], [,u'D0([v], [v']). (C3) 

It is clear that the factor 15([m], [nD has properties 
analogous to Eq. (CI) and Eq. (C3); i.e., 

15([m], [n]) = 0, (C4) 

unless each point of [m] coincides with some point of 
[n] and 

15( [,u] ffi [v], [,u'] ffi [v']) 

= 15([,u], [,u'])I5([v], [v']), (C5) 

if [,u] is far from [v] and [,u'] is far from [v']. More­
over, from the product property of the f's we have 

f([m] U [nD = f([,u] U [v])f([,u'] U [v']). (C6) 

For a configuration in which [m] and [n] overlap 
Eq. (66) follows from Eqs. (B20) and (C3). In case 
one or both of the intersections [,u] n [v] and [,u'] n 
[v'] are not empty, the only term in Eq. (20) which 
need be considered is the one for which 

[/1] = [/1'] = [m] n [n]. 

Then Eq. (66) follows from Eq. (B20) together with 
Eq. (C3) and (C5). Equation (65) follows from Eqs. 
(CI), (C4), and (B20). 
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Three types of Born series which can be associated with a transition amplitude are discussed, and the 
criteria for the convergence of the different series are compared. With regard to the divergence of the 
Born series, the ordering, matrix-element series diverges implies vector series diverges implies operator 
series diverges, is obtained for the natural vector and operator Born series that can be abstracted from 
the expression for the transition amplitude. The conclusion that the divergence of the operator Born 
series does not ensure that the Born series of physical matrix-elements divergences is applied to an 
example of three-body rearrangement scattering. 

CONVERGENCE OF THE BORN SERIES 

Any transition amplitude can be expanded in an 
infinite series in three ways: (1) as an operator series in 
which each term of the series is an operator which 
acts upon a space of functions, (2) as a vector series 
in which each term is a member of a function space, 
(3) as a series of matrix elements that are complex 
numbers constructed from the operators on, and the 
vectors of, the function space. 

Although this decomposition can be made for two­
body scattering amplitudes, it becomes more impor­
tant when many-body amplitudes are expanded in 
power series. This importance stems from the well­
known fact that three-body systems, for example, 
can have additional asymptotic states, which provide 
additional right-hand cuts and therefore make the 
usual perturbation theory, developed for two-body 
operators, ineffectual,1 

By using this classification of Born series we are able 
to remove much of the confusion that has arisen in the 
problem of the convergence of the Born series for the 
three-body amplitudes of rearrangement collisions.2 

The way in which this is done is best seen through an 
example. 

Consider the rearrangement process: (1, 2) + 3 ~ 
(l, 3) + 2, for which the transition amplitude is 

(1) 

If'~+) == 1pJw) = (l + G(W)Vi)cPi, W = E + i'Y), 'Y) > 0, 
and E is the total three-body energy. cPt and cPi are the 
final- and initial-state vectors, and V, = (VI + V3) 

and Vi = (VI + V2) are the interactions which are not 
involved in forming the final and initial configurations. 
V~ (ex = 1, 2, 3) are the two-particle interactions of 

• Supported by U.S. Atomic Energy Commission. 
1 S. Weinberg. Phys. Rev. 133, B232 (1964); c. Lovelace, Phys. 

Rev. 135, BI225 (1964); and L. V. Faddeev, Sov. Phys. JETP 12, 
1014 (1961). 

•• R. Aaron, R. D. Amado, and B. W. Lee, Phys. Rev. 121,319 
1961). 

particles not labeled by ex. Finally, G(w) = (w - H)-l, 
Go(»') = (w - Ho)-I and H = Ho + VI + V2 + Va. 
Then 

(2) 

The operator series follows when the total Green's 
function, or resolvent operator, G(w) is extracted 
from the second matrix element and is expanded in 
powers of the operator K(w) = GO(w)(VI + V2 + V3): 

00 

G(w) = 2 Kn(w)GoCw). (3) 
n=O 

If the vector G(w) VicPi is written as the series, 
00 

G(W)V;cPi = 2 Xn(W), (4) 
n=O 

wheretheXn(w) = Kn(w)GO(W)VicPi= Kn(w)1poarease­
quence of vectors, the vector series is defined. Further­
more the Born series may be taken to be the series of 
matrix elements: 

00 

T'i = 2 an(w) + (cPt, VtcPi)' 
n=O 

where anew) = (cPt, VtXn(w). 
It is now obvious that the three series, although they 

are concerned in the description of the same physical 
process, will have quite different mathematical 
properties. In the following, we show that the vector 
Born series may converge when the operator Born 
series diverges, and the Born series of matrix elements 
may converge when the vector series diverges. 

In order to obtain these results, it is necessary to 
generalize the problem by considering the resolvent 
operator as the function of a complex parameter A: 

G(w, A) = [w - Ho - A(VI + V2 + Va)]-l. 

Now the radii of convergence of the operator, vector, 
and ordinary power series of the complex variable A 
can be computed and are shown to have the ordering 

Ro(w) ~ RvCw) ~ R"u(w), 

'b K. Dettmann and G. Leibfried, Phys. Rev. 148, 1271 (1966). where Ro(w), Rv(w), and RM(W) are, respectively, the 

891 
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radius of convergence for the operator, vector, and 
matrix-element series at the complex energy w. 
Unfortunately, in this approach A has not the imme­
diate interpretation of the strength of any single 
interaction, but is instead an over-all strength param­
eter. In certain special cases, however, it can be 
given a more physical meaning. 

The important mathematical point to be deduced 
from this work is that the divergence of the operator 
Born series does not imply that the Born series for the 
matrix elements diverge. This also has a physical 
content because the series of matrix elements is the 
object calculated and compared with the observed 
data. On the other hand the operator and vector series 
have the advantage, when they converge, of implying 
the convergence of the series of matrix elements for 
all initial and final states and all final (or initial, 
depending on which vector series is chosen) states, 
respectively. 

These results also provide the reminder that, 
although operator equations can be easily manipulated 
in a formal manner, they contain more structure than 
is required for particular processes when they must be 
taken to act upon specific states. 

In this work, we do not consider the problem of 
how fast the various series converge, nor how they 
can be made to converge more quickly. The dis­
crepancy between the conclusions of the papers by 
Aaron, Amado, and Lee and Dettmann and Leibfried 
can be understood from our point of view, even 
though in neither of these papers are the techniques of 
functional analysis used. The latter paper analyzes 
the convergence properties of a series of matrix 
elements, while the former first discusses the corre­
sponding operator series in a particulaJ; represent~­
tion and then on the basis of the divergence of thIS 
seri:s argues that the series of physic.al matrix ele.ments 
must also diverge, since each term IS only a weIghted 
mean of the corresponding term in the operator series. 
The divergence of the operator series may be due t.he 
divergence of the matrix elements of the oper~tor ser~es 
between certain vectors which are not assOCIated WIth 
the physical states under discussion. 

In the first part of this paper, the three types of 
series are discussed and the expressions for their radii 
of convergence obtained. The three' radii of conver­
gence are then compared and the result Ro(w).:::;; 
Rv(w) :::;; RM(w) deduced. Finally the vector-senes 
approach is used on a Hilbert-space m~del. of the 
problem discussed by Dettmann ~nd. L:lbfned. We 
are able to obtain results compatIble WIth those of 
Dettmann and Leibfried. The theorems for the vector 
series are proved in the Appendix. 

OPERATOR-VALUE BORN SERIES 

The results of the theory of operator-valued 
functions are well known1 and can be presented in 
terms of the spectral properties of these operators. 
The operator (0(1 - K)-l is the resolvent operator of 
K and exists as a bounded operator for 0( in the 
resolvent set of K. 

If we choose K to be bounded, then its spectrum 
lies in a bounded region of the complex 0( plane. 
After defining the spectral radius of K to be r(K) = 
sup 10(1 = lim IIKnlllln :::;; IIKII, it can be shown that 

Cl.ECI(K) n-> 00 

(0(1 - K)-l is analytic in 0( for all 0( such that 10(1 > 
r(K). Since (0(1 - K)-l is analytic in this region, it can 
be expanded in a Taylor series: (rx1 - K)-l = 
L::o Knjrxn- I , which is uniformly and absolutely con­
vergent for 10(1 > r(K). The uniform convergence 
has two meanings, both of which are valid here: the 
convergence is uniform with respect to the parameter 
0( in Irxl > r(K), and it is also convergent in the 
uniform operator topology (convergence in the mean). 

Now, if we put 0( = A-I, (J - AK)-l = L:~o AnKn, 
where the series is uniformly and absolutely conver­
gent for IAI < [r(K)]-I. In other words, the radius of 

convergence of this series is [r(K)]-1 = [~~~ II KnplnTI. 

Sometimes the symbol p(O) is used to describe the 
radius of convergence of the series; this is the distance 
from the origin in the A plane to the nearest point of 
the A spectrum, that is, the distance to the point in the 
A 'spectrum for which IAI is smallest. In terms of the 
spectrum of K, this latter point will be the point rx 
in the spectrum, for which 10(1 is largest. Then p(O) = 
[r(K)]-1.3 Then the operator Born series is convergent 
at a fixed energy E, if K(E) has no spectrum outside 
the unit circle in the rx plane, for then p(O) > 1. 

In this presentation, the emphasis is on the relation­
ship between the analytic structure of (rxl - K)-I 
as a function of the complex variable rx and the 
location of the spectrum of K. This is not the only 
approach but it is more attractive, mathema~ically, 
than the others which lead to the same conclUSIOn for 
the Born series. The advantage of using the operator 
approach is that, once the convergence for the Born 
series has been obtained, then the convergence 
of Born series in either of the other two forms 
mentioned earlier follows. That is to say, that (CPb' 
(1 - K)-lcpa) = I;:o (CPb, Kncpa) is convergent for 
any choice of CPa and CPb in the underlying Hilbert 
space. From another point of view, this gene.rality 
provides a disadvantage for, as we shall see, If the 

3 It can be shown that if 0( lies in spectrum of K, 0(-1 is in the A 
spectrum and belongs to the point or continuous spectrum when IX 

does. We have assumed K has no residual spectrum. 
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operator series diverges, we are still not sure whether 
the particular matrix element that is to be calculated 
can be expanded in a convergent series or not. 
Certain choices of the elements CPa and CPb may lead to a 
convergent Born series. 

VECTOR-VALUED BORN SERIES 

The mathematical idea behind the adoption of the 
vector approach is the following: The operator 
[I - AK(w)]-l becomes undefined as A approaches 
some point in that spectrum of K(w), and thus any 
power series in A for this operator must diverge at any 
point in the spectrum. However, the vector "1'(,1.) = 
[/ - AK(w)]-lcp may be well behaved at a point in the 
spectrum, if cP is chosen in such a way that it is not 
associated with that part ofthe spectrum. For example, 
if A approaches the eigenvalue An of K( w) and cP is an 
eigenvector of K(w) with eigenvalue Am ~ An' then 
[I - AK(w)]-lcp is well defined as A -+ An' We may 
thus expect that the approach through a vector series 
can be made to be independent of the singularities of 
[/ - AK(w)]-l and hence the restriction to operators 
with only isolated singularities, i.e., compact operators, 
can be bypassed. Furthermore, we may be able to 
extend the region of convergence of the power series 
past the location of the singularities in the A plane. 
In the approach using vector-valued functions, we 
begin by considering the series 

00 00 

(I - AKrlCPa = LAnKncpa = LAnXn, (5) 
n=O n=O 

where Xn = KnCPa is, for each integer n, a vector 
belonging to the Hilbert space; these vectors differ 
from the other vectors we will use in the following in 
that we will not normalize them to unity. The question 
now is whether this series of vectors converges. 
Usually, we would have to consider separately weak 
and strong convergence of the series, but here we will 
take the vectors to be functions of the complex 
variable A and this will enable us to decide both of these 
questions at the same time. 

We consider a sequence {1pn(A)} , where 1pn(A) = 
L~=o A.PXp, of vector-valued functions of the complex 
variable A, and we wish to discuss the convergence 
and analyticity properties of this sequence. A vector­
valued function ~(A) is said to be an analytic function 
in some open domain U of the complex A plane if the 
ordinary complex function (cp, ~(A» is analytic for all 
A in U and all cP in :Ie. (:Ie is the Hilbert space of the 
vectors considered; thus we always assume that 
II~(A)II = la(A), ~(A»I! < 00.) Now the analyticity 
properties are derived from the corresponding 
properties of the ordinary complex-valued functions 

(cp, ~(},» and from the concept of a linear functional. 
The following two theorems are pertinent to our 

work. The proofs of these theorems is given in the 
Appendix. 

Theorem 1: If 1p(A) is an analytic vector for A in 
some finite open domain U, then it possesses bounded 
analytic derivatives 1p(n)(Ao) for Ao E U, where 

for any cP in the Hilbert space. Furthermore, if the 
circle IA - Al ::::;; r is contained in U, then 1p(A) is 
given by the Taylor series 

which, within this circle, converges uniformly and 
absolutely. 

Theorem 2: Any power series L~o 1pp(A - Ao)Pdefines 
an analytic function 1p(A) in an open set 1,1. - ,1.01 < S 

of the complex A plane, where S = (lim II "1'11 II l/P)-l, 
p_oo 

The series converges absolutely and uniformly on any 
set IA - ,1.01 ::::;; d, where d ::::;; s. Furthermore, the series 
is defined uniquely by its sum 

since 

00 

X(A) = L 'ljJp(A - AoY, 
p=o 

X(P)(A) 
'ljJp = --,-, 

p. 

for all integer p. Absolute convergence means that 
the sum of the norms converges; 

This implies that we have strong convergence, and 
the proof exhibits the fact that weak analyticity is the 
same as strong analyticity. The convergence of the 
series is uniform for all A in the circle IA - Aol < s. 

When we apply these theorems to the Born series, we 
must examine the series L:'o An'IjJn, where 'ljJn = Kn'IjJa' 
Suppose this converges, in IAI < s(CPa), to the vector 
X(A); we still have to show that X(A) is a solution of the 
original Lippmann-Schwinger equation, 'I'(A) = 'ljJa + 
AK(w)'I' (A). That this is the case is shown in the 
Appendix under the assumption either that K is 
bounded or (1- AK)t has dense range in the basic 
Hilbert space. In all the scattering problems that we 
will consider, K is bounded. 
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Nowwe can state the result for the vector Born series. 
The vector Born series 'I' = L:~o "Pn = L~o K"«(I)1Pa 
converges absolutely if lim II"Pnlll/n < 1. It is imme-

u--oo 

diately obvious that this condition is less restrictive 
than the corresponding criterion for the Born series 
for an operator. We do not have to bother with 
compactness; the fact that K is bounded is sufficient 
to ensure that the question of convergence is not triv­
ial. The comparison between the two methods will be 
drawn in greater detail later. 

Although it may appear that we have only discussed 
the convergence of the Born series for the vector and 
still have to prove that the series of matrix elements 
converges when the vector series does, this last step 
is trivial. The vector series convergences in the strong 
topology and as this implies weak convergence we 
have immediately that 

BORN SERIES FOR MATRIX ELEMENTS 

The last point suggests a further and final specializa­
tion for the meaning of the Born series, for the 
approach using vector-valued functions requires more 
than may be demanded by a physicist who wants to 
decide if the Born series for a particular matrix 
element converges. In essence, we have asked that 
L:~o (cpt' V"Pn) converges to (cpt' V'I') for all vectors 
CPt E Je, while the experimentally determined matrix 
element only requires convergence for one particular 
final state CPt. That is, we want to discuss the con­
vergence of L:~o (cpt, V"Pn) for fixed cPj. This takes the 
question out of the domain of functional analysis 
because we have a simple series of ordinary complex­
valued functions to examine. This problem is easily 
solved theoretically, especially as we are only dealing 
with one value of the energy. 

Consider the seriesL':o Anan, where an = (cpt, V"Pn); 
in order to more easily compare the result of this 
section with the others we will only consider the 
coefficients an = (~, Kncpa), where ~ = vtcpblllVtcpbll. 
This redefinition will not alter the convergence 
properties of the series but will alter the sum of the 
series if it does converge, thus the final result must be 
multiplied by II Vt CPbll to get a numerically correct 
result. 

The series L':o A nan converges absolutely and uni-

formly for all A inside the circle IAI < (lim lanI1/n)-1. 
n-oo 

The adjective absolute just means that the sum 
of the moduli of the individual terms converges. 

Hence the Born series for the matrix element converges 

if lim lanl 1
/
n < 1. 

COMPARISON OF RESULTS 

In this section we show that the radius of conver­
gence of the power series gets no smaller as the method 
is specialized from a series of operators to a series of 
vectors to a series of matrix elements. We will also 
demonstrate an application of the vector series to the 
situation in which the operator K is noncompact. 

The comparison. between the radii of convergence 
for the series of operators and the vector series is 
considered first. The radius of convergence for the 
operators series is the inverse of 

r(K)=limsupIIKn"Plll/n, 11"P11=1, if "PEJe, 
n~ '7) ~·E.JC 

(6) 
while 

s(K, CPa) = lim II KnCPaI1 1/n, where II CPa II = 1, 

CPa E Je, (7) 

is the inverse of the radius of convergence for the 
vector series. From the definitions of these terms, 

thus 

and 
r(K) ~ s(K, CPa). 

The radius of convergence of the vector series is 
greater than or equal to that of the operator series, or 
in terms of the Born series: since s(K, CPa) ~ r(K), 
and the criterion for convergence of the Born series is 
either r(K) < 1 or s(K, CPa) < I in the two cases, the 
vector Born series may converge when the operator 
Born series does not. Similarly we can show the Born 
series for the matrix elements may converge even 
though its counterpart for the vector series does not. 
The inverse of the radius of convergence for the former 
series is 

t(K; CPb, CPa) = l~~ I(~, KnCPaW/n, ~ = II~:::II ' 

I(~, Kncpa) I ~ II ~IIIIKnCPall 

by the Schwartz inequality.4 Therefore 

I(~, KncpaW/n ~ IIKnCPaI1 1/n. 

These results can be written in order of implication of 
convergence: since t(K; CPb, CPa) ~ s(K, CPa) ~ r(K), we 

4 We have assumed that the matrix element is composed of 
objects which are well defined in terms of Hilbert spaces and linear 
operations on them. 
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have that the convergence of the operator series implies 
convergence of vector series implies convergence of 
matrix-element series. In symbols: operator --+ vec­
tor --+ matrix-element series converges. On the other 
hand, we have for divergence of the various series: 
Matrix-element --+ vector --+ operator series diverges. 
The important point is that the divergence of the oper­
ator series does not ensure the divergence of the vector 
or matrix-element series, the results for the latter two 
cases depend upon the choice of elements CPa and CPb 
in the Hilbert space. 

The methods used in the vector and matrix-element 
series in no way depend upon the compactness of the 
operator K. If K is a bounded operator then we are 
certain that the radius of convergence in these two 
cases is finite, and we have a method of deciding if the 
Born series converges in these cases. In the operator 
approached discussed by Weinberg and Lovelace,l 
the operator K was interpreted as the kernel of an 
integral equation, and the methods used were basically 
ways to reduce the kernel to a compact form. In the 
case of the three-body scattering, the kernel for the 
Born series could not be reduced to a compact form 
and therefore the power series could not be adequately 
discussed. It is, therefore, interesting that the method 
of a vector series presents an algorithm with which we 
can decide the convergence or divergence of the 
vector Born series for noncompact operators. 

The example of a rearrangement process, which was 
discussed by Dettmann and Leibfried,2b is compatible 
with our result that the radius of convergence for the 
series of matrix elements is greater than or equal to 
that for the series of operators, although the details of 
their paper do not fit into the scheme discussed here. 
For example, they use functions which are not 
members of a Hilbert space and they also let the 
energy vary so that they have a function of two 
variables. 

If K is assumed to be compact, as in the two-body 
scattering process, we can discuss in more detail the 
differences between the operator and vector series. In 
this situation the radius of convergence of the operator 

series is p(O) = (' sup I!XI)-l = l!Xal-I, where CPa i~ 
:<EO(J\.) 

the eigenfunction of K(w) corresponding to the 
eigenvalue !Xa • If we had chosen CPa as the initial vector 
in the sequence Kncpa' n = 0, 1, 2, ... , s(K, CPa) = 
lim IIKnCPall"/ l = lotal and hence s(K, CPa) = r(K). 

n--+ 00 

But if we had chosen the eigenfunction CPb' with 
eigenvalue !Xb:;<' !Xa , as our initial vector then the 
inverse of the radius of convergence s(K, CPb) = 
l!Xbl < l!Xal = r(K) and the radius of convergence of 

the series of vectors is greater than that for the oper­
ator series. The vector Born series may converge, 
for l!Xbl < 1, even though the operator Born series, 
with [/Xal > 1, does not. 

In scattering theory, the initial vector is always 
given and in general is not an eigenfunction of the 
operator K; therefore the analysis is not as direct as 
we have presented in the previous paragraph. For 
example, in the two-body scattering problem in which 
K(w) = Go(w) V = (w! - HO)-lV, K(w) is compact if 
V is square-integrable, the initial vector CPa is always an 
approximate eigenfunction associated with the con­
tinuous spectrum of the unperturbed Hamiltonian Ho; 
i.e., there exists an E > 0 upon which <l>a depends, 
such that for some energy E, II(E! - Ho)<I>all < E. 

Even if we relax the strictures of the Hilbert-space 
approach and allow CPa to be eigenfunction of Ho, 

HoCPa = Ecpa' CPa is not an eigenfunction of K, for, if 
AKX = X, then Go(w)(W! - Ho - AV)x = 0, and 
since Go(w) is bounded for W in the resolvent set of 
Ho, X is an eigenfunction of Ho + A V, with eigenvalue 
W = E + iE, not an eigenfunction of Ho. (The case 
A = ° tells us that X = 0.) 

VECTOR SERIES AND NONCOMPACT 
OPERATORS 

The operator K(w) = Go(w) Ii<i Vii' which is the 
generator of the Born series in the scattering processes 
involving three or more particles, is not a compact 
operator. This means that the operator methods, 
which worked for two-body processes, where the 
pertinent operator was compact or reducible to a 
compact form for well-behaved potentials, are 
inapplicable. On the other hand, the vector series, 
whose efficacy does not depend upon the compactness 
of the generating operator, can be used in the same 
way for two-body or for many-body calculations. 

We will demonstrate this property of the vector 
series by first displaying a simple mathematical 
example. 

K = -d2jdx2 acts upon the space of real functions 
which are square-integrable over the interval [0, 00]. 
Its domain is the set of functions which have piecewise 
continuous second derivative and for which u(O) = 1 
and both u(x) and u"(x) are square-integrable. It is 
easy to show that K is not self-adjoint, it is semi­
bounded from below and has a continuous spectrum 
on the positive real axis of the A plane. This last prop­
erty implies that K is not compact. Nevertheless, if we 
consider the series of vectors I:~o AnXn' where Xn = 
Kncp, and take cP = e-x

/ 2 , we find, by computing the 
radius of convergence of the series, that it converges 
in the circle IAI < 2. Therefore the vector Born series 
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(J. = 1) converges, and converges to tr"'/2 = 
(/ - K)-l~. The vector series does not converge for 
all choices of ~, for example, if ~ = r"', the Born 
series diverges. Thus we see the importance of the 
choice of initial vector ~, which choice we expect to 
remain important in more complicated situations. 
This problem is not the best analogy to the situation 
that arises in scattering theory because, in order to 
simplify the calculation, we took ~ to be an eigen­
vector of K corresponding to a discrete eigenvalue. 

We would like, finally, to show the way in which the 
one-dimensional example considered by Dettmann 
and Leibfried is compatible with our theoretical 
considerations.· To this end we compute the radius of 
convergence of the vector series for the initial state 
in this problem. These authors do not consider the 
full Born series but only the subseries L:=o (Gov)n"Po, 
where "Po = Gov'~.5 In this exercise, one of the three 
particles is infinitely heavy and is bound to the origin 
and the coordinates of the other two particles with 
masses m and M are designated respectively by x and 
X. In the initial channel, the particle of mass m is 
bound to the origin by a potential vex) = -ocb(x), 
and the initial-state vector is 

~(X, x) = (2:)!rKIXlriK"'. 

Unfortunately, functions of this type are not L2 and 
thus cannot be included in the spaces which were used 
in our theoretical discussion. Even though it is not 
necessary to use Hilbert spaces to frame the properties 
of vector-valued functions of a complex variable, all 
we need is a Banach space; it is simpler to modify the 
function ~ so that it does belong to L2 than to search 
for a Banach space to which ~ belongs, and which 
furnishes the desired convergence properties for the 
linear functionals. In our calculation, ~ was multiplied 
by a factor (27Tp)!rP1xl , so that ~ had unit norm in the 
space V(E2)' p may be thought of as representing a 
spread in the incident momentum of the particle with 
mass M. At the end of the calculation, after the limits 
have been taken, P is put equal to zero. On account 
of this modification, we cannot be certain that our 
results can be directly related to those of Dettmann 
and Leibfried even though the answers are numerically 
similar. 

The unperturbed Green's function Go should be 
evaluated at the complex three-body energy E + irl, 
and the limit 1] - +0 is taken at the end, after the 
limit n - 00. The only other important aspect of the 

• Throughout this calculation we use the notation of the paper of 
Dettmann and Leibfried, and any terms undefined here are taken 
from that paper. 

calculation is that the initial state is evaluated at 
the total three-body energy 

1i2K2 1i2K2 
E=--+-. 

2m 2M 

Since the total energy is constant, this expression is 
used at each step in the calculation to eliminate the 
variable K. 

where 
v' = -oc'b(x') = -1X'b(X - x), 

is the potential which binds the particles in the final 
state. 

, mMoc' 
K = 1i2(m + M) , 

(X) , (KP)! 'K(MX + mx) "Po ,x = - K -- exp 1 
ip M+m 

where 

x exp -(K + P) I MX + mx I exp ip IX - xl, 
M+m 

2 2mM 
p = Ii\m + M) 

x [E + i1] + 1i
2 

(_K2 + K2 + P2)J 
2(M + m) 

and 

(Gov)n"Po = ~' (Kp>!(~)n exp iq IXI exp ip Ixl 
Ip Iq 

X exp -(K + P) M Ixl exp iK MX 
M+m M+m 

(Gov)n"Po is L2(E2), provided that 1] is nonzero, so that 
we can form II(Gov)""PoII 1

/
n and take the limit as 

n- 00: 

where 

2 2m [ . 1i
2 

q = - E + 11] +-
1i2 2M 

X (_ 2 _ K2M2 + (K2 + P2)M2)J 
p (m + M)2 (M + m)2 ~ 

Now we take the limits P - 0, 'fJ - +0, to obtain the 
result that the Born series I:=o (Gov)n"Po converges for 
the total three-body energy E > EJl(m2 + M2)/mM, 
where E]/ = n2K2/2m is the magnitude of the binding 
energy of the initial two-body bound state. 

This result appears to agree rather well with the 
result obtained by Dettmann and Liebfried that, for 
Eu < E;im'jm)(M + m)2jM2(whereE~isthebinding 
energy in the final two-particle subsystem), the Born 
series for the matrix elements converges for E > En. 
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Thefactthat[(m + M)2jmM] EE is always greater than 
EE fits the theoretical conclusion that the series for the 
matrix elements is convergent over a larger region 
than the series for the corresponding vectors. Never­
theless, for the reasons we have referred to previously, 
this agreement should not be taken to be more than an 
indication of why the counter example works. 

If we had chosen to expand the final state vector, it 
is apparent that the energies at which the series 
converged would depend upon the binding energy in 
the two particle subsystem of the final configuration. 
Furthermore, in this example, the region of the 
total energy plane, where the series for the matrix 
elements convergences, would depend upon both the 
final and initial binding energies. 

This result does not prove that the actual vector 
Born series for this example converges in this energy 
range. We have considered only a sub series of the 
total Born series and from the form of the total vector 
Born series, we can see that the radius of convergence, 
if it is nontrivial, will depend in some complicated 
manner on both the coupling constants K and K'. 
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APPENDIX: VECTOR-VALUED FUNCTIONS 
OF A COMPLEX VARIABLE 

The theorems to be proved are standard in the 
mathematical literature ,6 nevertheless, it seems worth­
while to present them here. The methods are analogous 
to those used in ordinary complex analysis. 

Theorem 1: If 1p(A) is an analytic vector for A in some 
finite open domain U, then it possesses bounded 
analytic derivatives 1p(n)(Ao) for Ao E U, where 

dn 

(4), 1p(n)(A) = dAn (4), 1p(A»I .. ~ .. o' 

for any 4> in the Hilbert space. Furthermore, if the 
circle IA - Aol S r is contained in U then 1p(A) is given 
by the Taylor series 

1p(A) = i (A - Ao)n 1p(n)(Ao), 
n~O n! 

which, within this circle, converges uniformly and 
absolutely. 

• N. Dunford and J. T. Schwartz, Linear Operators Part 1. (Inter­
science Pub!., Inc., New York, 1958), sec. III, 14; E. HiJIe and R. S. 
Phillips, Functional Analysis and Semi-Groups (American Mathemat­
ical Society Colloquium Pub!., Providence, R.I. 1957), Vo!. 31. 

1n the proof we will use the notation lim for the 
limit superior. 

Proof For ;'0 E U, (4), 1p(A» is an analytic function, 
for all 4>, and hence by Cauchy's integral formula 

~ (-I.. (A » - 2!l1 (4),1p(z)) dz 
dAn '/', 1p 0 - 27Ti Yc (z _ Ao)n+l ' 

where C is the circle Iz - Aol = r. Now 

\ :A: (4), 1p(AO»\ S ;~ 114>11 II 1p(C) II , 

where 111p(C)11 is sup of the value of II 1p(z) II for z on the 
circle C. (We know they are uniformly bounded 
because 1p(A) is analytic on C.) Thus we have a 
bounded linear functional and there must exist a 
bounded vector 1p(n)(Ao) such that 

dn 

(4), 1p(n)(Ao» = dAn (4), 1p(Ao» 

by a theorem on linear functionals. Since the proof is 
independent of the choice of Ao E U, we have proven 
the first result; the analyticity follows directly from 
that of dnjdAn(4), 1p(A» for A E U. The bound of 

1p(n)(Ao) is II 1p(n)(AO) II S ~!1 111p(c)II. 
r 

The validity of the Taylor series also follows from 
the Cauchy formula. Consider the remainder vector 

;vCA) = 1p(A) - i (A - Ao)n 1p(n)(Ao), 
n~O n! 

and form the product 

(4) ~ (A» = (A - Aoy+1 1 (4), 1p(z» dz 
, l' 27Ti Yc (z - Aoy+1(Z - A) , 

where C is the circle Iz - .1.01 = r contained in U and 
IA - Aol < r. Then 

1<4>, ~1'(A»1 S 1.1. -1'~~IV+l r 114>1I1I1p(C)II, 
r p 

where p is the shortest distance between A and the 
circle C. Therefore ~ 1'(.1.) is bounded, as this result 
holds for all 4>, and 

lI;vCA)1I S 1.1. -1'~~I1'+1 r 111p(C)II. 
r p 

The right-hand side of this expression tends to zero 
as p - 00 because 1.1. - .1.01 < r. This proves the 
uniform convergence. 

lim 1/1p(A) - i (A - Ao)n 1p<n)(Ao)/1 = O. 
1'--><» n~O n! 

The absolute convergence follows just as easily. Let 

X1'(A) = i (A - Ao)n 1p(n)(Ao). 
n~O n! 
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Then 

and 

;~n;, I(~, X.(l» I ,;; II ~ 1111 'I'l c) II (1 _ I; ~ .. I) < 00. 

But this is true for all cfo E:Ie; therefore, 

lim II X1'(A) II S 1 < 00, 

1'-+00 (1 _ 1,1. ~ ,1.01) 

which is the condition for absolute convergence. 
Q.E.D. 

Theorem 2: Any power series ~;:o VJ1'(A - Ao)P 
defines an analytic function VJ(A) in an open set 
1,1. - ,1.01 < s of the complex A plane, where 

s = (lim IIVJ1' 111/1')-1. 
1'-+ 00 

Proof Consider the partial-sum vectors Xp(A) = 
~:=o (A - Ao)nVJn. For p > q, I(cp, X1'(A) - xiA» I s 
~:=q+lIA - Aoln IlcpllllVJnll, by the Schwartz inequality. 
The right-hand side will tend to zero for sufficiently 
large p and q, if A is chosen so that 

1,1. - ,1.01 < (1IVJnI11/n)-1, 

for n large enough. This will be true in the limit as 
n ~ 00, if 

That is to say, by the Cauchy convergence criterion, 
(cp, X1'(A» will converge to some bounded linear 
functional a(cp). Then by a theorem on linear func­
tionals, there exists a unique bounded vector-valued 
function X(A) such that 

00 
a( cp) = (cp, X(A» = ~ (A - Ao)n( cp, VJn(AO»' 

n=O 

The vector X(A) is analytic within the circle 

IA. - ,1.01 < (lim IIVJnlll/n)-I, 
n--..oo 

from the analyticity of the ordinary functions 

00 
(cp, X(A» = ~ (A - Ao)n(cp, VJn(Ao». 

n=O 
Q.E.D. 

From the previous theorem (Theorem 1), the 
series is uniquely determined by its vector sum X(A) 
and the uniqueness of the power series within its 
circle of convergence, 

VJ (A ) = X(n)(Ao) 
nOn! ' 

and, therefore, X(A) = ~;:o (A - Ao)nVJn(Ao) converges 
uniformly and absolutely within the circle of con­
vergence. 

We also have to show that the vector we have 
constructed from the power series is a solution of the 
Lippmann-Schwinger equation. 

Theorem 3: If X(A) = ~;:o AnVJn, where VJn = KnVJa , 
then, for A in the circle of convergence of the power 
series, X(A) satisfies the Lippmann-Schwinger equation 
'1'(,1.) = VJa + AK'I'(A). 

Proof Consider the partial sum X1' = ~:=o AnVJn, for 
A in the circle of convergence. The following equation 
is identically true X1'CA) - VJa = AKX1'(A) - AP+IVJH1' 
Therefore 

and 

I(cp, xCA) - VJa - AKX(A» I s Ilcpll {IAIHI II VJ1'+1 II 

+ III - AKllllx(A.) - x1'(A)II}; 

hence, if (I - AK) is bounded, in the limit as p ~ 00, 

the right-hand side vanishes. The first term vanishes 
because within the circle of convergence 1,1.1 < 
( lim IIVJnII1/1')-1 and the last by the uniform con-
P~OO 

vergence for A within the circle. From this we can 
conclude that X(A) = VJa + AKX(A), which was to be 
proved. If (I - AK) is not bounded, but the range of 
(I - K)t is dense in the Hilbert space, the same result 
follows. Q.E.D. 
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It has been shown previously that if a potential consists of a superposition of a periodic part and a 
uniform electric field, then for a particle moving in this field there are Bloch bands closed in time. 
The present paper addresses itself to the question whether these bands may be identified with the field­
free bands. The most natural thing is to expect that the bands are slightly field dependent, but converge 
toward the field-free bands as E goes to zero. Bands for which this is true are said to be adiabatically 
connected to corresponding bands at zero field. In Sec. 2 of the paper, two model cases are given for 
which this adiabatic connection pertains. Section 3 is the central part of the paper and provides the con­
clusion that the answer to the question in the title is almost always negative. In this proof the positive 
cases serve an essential function. It is shown that the parameters of the periodic potential must obey at 
leas.t one supplementary condition to allow adiabatic connection, and that the collected cases precisely 
obey this condition. Adiabatic connection is thus generally not possible. Section 4 provides an explicitly 
soluble case which does not allow adiabatic connection. An infinite number of field values E converging 
toward zero are found at each of which the two bands under consideration switch identity (hyperbolic 
rather than linear connection at energy crossings). The connection postulated in the effective-mass 
approximation must therefore be of a nonadiabatic nature. It probably involves the "sudden" approxi­
mation of quantum theory. 

1. INTRODUCTION 

A number of papersl - 3 involving one of the authors 
have appeared, investigating the compatibility of the 
concept of Bloch bands with the presence of electro­
magnetic fields. As one would expect on physical 
grounds, such compatibility, if existing, is entirely 
limited to static uniform electric and magnetic fields. 
Within this domain the situation is as follows. If only 
a uniform electric field is present, then one can prove 
rigorously that Bloch bands exist which are closed in 
time. If we look at the motion of the particle within 
such a band we find that it moves according to the 
law 

electric field, this case is entirely disposed of. This is 
not so. There remains the question of the identity of 
these Bloch bands which is by no means trivial. Al­
though Eq. (2) of Ref. 1, which is most conveniently 
used to expand the Bloch functions in powers of the 
field, is proved as a valid equation for the true Bloch 
functions, the expansion itself is not proved thereby 
as valid. Another way to see the same thing is to 
observe the operator which defines these bands for 
finite field. It is written out in Eq. (22) of Ref. 2. The 
operator is of such a structure that going to the limit 
of zero field is not possible for it. One must remember 
here that the question of the feasibility of this limiting 

k = ko + eEl/ii. 

The proof of these facts does not depend on power­
series expansion in the field E. It is in fact possible 
to derive directly the basic equation used for power­
series expansion with the help of the proof. Such a 
proof is not available in the case of a magnetic or of 
mixed fields. The existence of closed bands is still 
linked in these cases with the notion of power-series 
expansion. It is therefore possible in these latter 
cases that the existence of bands is only valid asymp­
totically for small fields. 

(1) operation is an extremely serious one. The entire 
effective-mass approximation which is used in thou­
sands of papers depends on it. It must be possible to 
take this limit in some sort of way. However, the way 
in which to take it is not now known. We shall show 
in this paper that the limit is not simply an adiabatic 
limit. In other words the power series derived from 
Eq. (2) of Ref. I is almost always (in the mathematical 
sense) divergent. In fact, the bands at any finite field 
are separated from the bands at zero field by an 
infinite number of singular-field values at which they 
switch identity. The proof for this divergence is given 
below by the method of perturbed parameters. In 
other words we start out from a model case in which 
the power series is known to be valid. We embed this 
case in a wider class of model cases of variable 
parameter. We then show that there is at least one 
singular field value in this' wider class unless this 
parameter {3 has exactly the value appropriate for the 

One might very well think that once the notion of 
Bloch bands is proved for the case of a uniform 

• This work was supported by the U.S. Office of Naval Research. 
t Present address: Lockheed Palo Alto Research Laboratory 

Palo Alto, California. ' 
1 G. H. Wannier, Phys. Rev. 117,432 (1960). 
2 G. H. Wannier and D. R. Fredkin, Phys. Rev. 125, 1910 (1962). 
• G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962). 
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special model. By this means the power series is proved 
as almost always invalid. 

2. PRESENTATION OF THE CONVERGENT 
CASES 

As stated in the introduction, the proof of divergence 
is based on a class of model cases for which the power 
series is known to converge. These cases must now be 
presented first. Let the periodic Hamiltonian be 
denoted by ;re(p, x). It obeys 

Je(p, x + p) = Je(p, x), (2a) 
where 

p = la + mb + nc, (2b) 
with 

1, m, n integer. (2c) 

Let its Bloch-type eigenfunctions be denoted by 
bq(x; k) and its eigenvalues by Wq(k). The Hamilton­
ian K(p, x) of our problem then takes the form 

K(p, x) = Je(p, x) - E· x, (3) 

where the previously defined dimensionless units have 
been employed. We look for a solution of (3) of the 
form 

"p(x, t) = ~Xq(t)bix, ko + Et). (4) 
q 

The summation in (4) does not include a summation 
over k because k is conserved by the Hamiltonian (3) 
if it is made time-dependent in accordance with 
Eq. (1). Substitution of (4) and (3) into the time­
dependent Schrodinger equation yields the equation 
system 

i(oXnlot) = Wn(k)Xn - E • I Xnlk)Xq. (Sa) 
q 

Here, the quantities Xna are the matrix elements of 
the Adams operator,' namely, 

Xnq =f b:(x; k)[x + i(%k)]bq(x; k) d-r. (5b) 

The special models mentioned above result from the 
equation system (5) in the following way. First we 
make the model one-dimensional, suppressing the 
nonessential axes at right angles to E. Thereupon we 
think of the mixing as taking place between two 
nonoverlapping bands 1 and 2 which we consider 
exclusively. We suppress therefore all matrix elements 
X la and X2q leading out of this pair. In addition we 
suppress Xu and X22 as nonessential. We are then left 
with the equation pair 

i(OXI/Ot) = WIXI - EXX2, 

i(OX2/0t) = W2X2 - EX*XI' 

It is convenient in the following to eliminate the two 

, E. N. Adams. J. Chern. Phys. 21, 2013 (1953). 

types of variables t and k, and to make Xl and X2 also 
functions of the variable (1). This is no restriction 
because all coefficients depend only on that combina­
tion. The equations become then 

iE(dXI/dk) = WI(k)XI(k) - EX(k)X2(k), (6a) 

iE(dX·Jdk) = W2(k)X2(k) - EX*(k)XI(k). (6b) 

WI (k) , W2(k), and X(k) are periodic functions of k of 
period 21T/d. The system (6) is a pair of ordinary 
differential equations of the first order. It has two 
solution pairs, and the general solution is a linear 
combination of these two pairs. All solutions obey the 
law of probability conservation; in other words, 
Eqs. (6) have the constant integral 

* * 1 XIXI + X2X2 = , (7) 

which we set equal to unity as is customary. 
When we contemplate the system (6), we observe 

that we are dealing with two oscillators coupled by the 
term EX. If this term is small and if it does not upset 
the "labeling" of the states in a fundamental way, 
then this term provides only a slight modification, and 
the exact solutions can still be associated with one or 
the other of the two bands. If this is true we shall 
have two solution pairs behaving approximately as 

X?) ~ exp [ - ~ f WI(k) dk} (8a) 

X~ll ~ EX* exp [- i fk WI(k) dkJ' (8b) 
W2 -WI E 

(9b) 

The solutions (8) and (9) have an analytic singularity 
at E = 0 which was first worked out by Houston.5 

As long as the singularity affects only the phase in this 
predetermined way we may consider it as nonessential. 

A second preliminary observation deals with the 
variable X. At first sight one might think of its modu­
lation as contributing something essential to the 
problem. This is not so, for we can modify the inde­
pendent variable k by the substitution 

y = flXI dk, (10) 

and express WI!lXI and W2!1XI as new periodic func­
tions of y. It is therefore no restriction if we occasion­
ally treat XX* as a constant, since it will become so 
after this transformation. 

• w. V. Houston. Phys. Rev. 57, 184 (1940). 
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After these observations we come to the main 
purpose of this section, which is to find real solutions, 
valid at finite field, which behave asymptotically as (8) 
for small values of E. To facilitate this we remove 
first the singular phase factor in (8) by the substitution 

X~l) = F exp [ - ~ r WI(K) dK 1 (lla) 

x~l) = G exp [ - ~ fk WI(K) dK 1 (llb) 

and insert into (6). We get 

i[dF(k)jdk] = -X(k)G(k), (12a) 

i[dG(k)jdk] = [W(k)G(k)jE] - X*(k)F(k), (12b) 

where 

W(k) = W2(k) - WI(k) (13) 
and, as before, 

F*(k)F(k) + G*(k)G(k) = 1. (7) 

We should now expect that if a solution of the type (8) 
exists, it means that F and G approach 1 and 0 con­
tinuously as E diminishes. Such a situation prevails 
formally if we write down the series-expansion solution 
in E of (12) (there is only one such). However, we are 
not interested in series expansions which are carried 
out in a much more general framework elsewherel but 
in actual functions F and G for which an eventual 
series might be a convergent expansion. 

The first case' in which these conditions are satisfied 
is essentially trivial. It is the case in which both W(k) 
and X(k) are constants independent of k. The solutions 
of (12) are then simple exponentials. One finds with 
(7) 

F(k) = (R + I)t ex i 2EXX*k (14a) 
2R p W(R + 1)' 

G(k) = (R - l)t(X*)t ex i 2EXX*k (14b) 
2R X P W(R + I) , 

where 

R = [1 + (4E2XX*jW2)]t. (15) 

The solutions (14) are clearly of the required form. 
They are expandable in a convergent power series in 
E and reduce to the limit 

F=l, G=O 

as E goes to zero. The solution pair is also free of 
singularities for all E. 

The other case in which a regular solution was found 
for (12) arises in the following special circumstances: 

X(k) = td, (16a) 

W(k) = wj(1 + € cos kd)t. (l6b) 

The way in which a solution can be derived need not 
preoccupy us here. One can verify by direct substitu­
tion into (12) and (7) that the following pair is correct 

F(k) = (2Rr![R + I - t(€E2d2jw2) cos kd]! 

'i kd t(Edjw)(1 + € cos x)t d x exp I x, 
o R + 1 - H€E2d2jw2) cos x 

(17a) 

G(k) = (2Rrt[R - 1 + HEE2d2jw2) cos kd]t 

.[ €Ed sin kd x exp I -arctan - t 
2w (1 + E cos kd) 

+ fkd HEdjw)(1 + €Cos x)t dX], 
Jo R + 1 - HEE2d2/W~ cos x 

(17b) 

where we defined, consistently with (15), 

R = [1 + (E2d2/W2) + (E2E4d2j4w4)]t. (18) 

Just as in the preceding case the solution (17) is 
defined and analytic for all real values of E. It is 
expandable in a power series in E and approaches 
F = 1 and G = 0 for E going to zero. In distinction 
from the preceding case, the solution is not trivial. It 
is generally supposed that the oscillations of the 
energy W(k) with k induce transitions between bands. 
We have such oscillations here, and nevertheless the 
states for finite E are analytically connected with the 
states for E = O. In particular, if the system was 
originally in the band I, then an adiabatic increase of 
E will produce the state (17). Inversely, an adiabatic 
reduction of E will reduce the solution (17) into 
F = 1, G = O. In other words, the bands at finite 
field are adiabatically connected to the bands at zero 
field. 

3. PROOF THAT ADIABATIC CONNECTION 
IS EXCEPTIONAL 

We shall now use the two solutions (14) and (17) as 
a base to prove the very opposite of what they seem to 
teach us, namely, that adiabatic connection is almost 
never present. For this purpose we observe that the 
two solutions agree in their overlapping region 
X = td, E = O. We can then think of the second 
solution as arising from the first by the growth of the 
parameter € which gives the bands a width and varia­
bility in k. However, we can introduce these features 
in many other ways than by the formula (l6b). One 
obvious way to do it is to change the case W = const 
to W(k) = Wo + € WI cos kd. If we find the solution 
in powers of €, we know it must converge to first 
order since it can be, to that order, a Taylor expansion 
of (16b). We shall discuss a more general case by 
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setting 

W(k) = w{ I - tE cos kd + m~/m(E cos kd)m}. 

To consider this in a more transparent way, write F in 
the form 

F(k) = Fo(E, E) exp [i 2E IXI
2 

Ik f(x) dX], (I9a) 
w(I + R) 

with R again defined by (15). Then from (12a), 

2EX· 
G(k) = f(k)Fo(E, E) 

w(I + R) 

x exp [i 2E IXI
2 

Ikf(X) dX]. (I9b) 
w(I + R) 

Since Fo(E, E) can be chosen to satisfy condition (7), 
we have reduced our considerations to the single 
functionsf(k) which because of (8b) should approach 
wjW(k) continuously as E goes to zero. 

After dropping the common factor we get from 
(12b) the following equation for f(k): 

i 2E df _ 4E
2

1XI
2 

f2 - 2W(k)f + w(I + R) = O. 
'dk w(I + R) 

(20) 
To proceed in powers of E, let 

00 

f(k) = ! fm(k)Em. 
m=O 

This results in the equation for fo: 

d}; 4E2 1XI 2 

i 2E ---.9 - f~ - 2wfo + w(I + R) = O. 
dk w(I + R) 

(21) 

Of its several solutions only fo = 1 behaves in the 
desired manner, and this solution makes (19a) the 
same as (14a) to the zeroth order-as it must be. 

The equation for thefn(n =;1= 0) is 

i 2E dfn - 4E
2

1XI
2 i fmfn-m 

dk w(I + R) m=O 

n 

- 2w! fn_mPm(cos kd)m = 0, (22a) 
m=O 

or 
df n-l 

i 2E _n - 2wRfn = w(R - I)! fmfn-m 
dk m=l 

n 

+ 2w! fn_mPm(cos kd)m, (22b) 
m=l 

which can be written as: 

df n 
iE ---!! - wRfn = L K~m cos mkd 

dk m=O 
n 

+ L K~m sin mkd. (23) 
m=l 

That (23) follows from (22) can be proved by 
induction if one ignores solutions to the homoge­
neous equation iE(dfnjdk) - wRfn = O. The solution 
to Eq. (23) will be 

n n 

fn = ! f~m cos mkd + ! f~m sin mkd, (24a) 
m=O m=l 

where 

f~m = (-wRK~m - im E dK~m)j(w2R2 - m2E2d2), 

(24b) 

f~m = (--wRK~m + im E dK~m>j(W2R2 - m2E2d2). 

(24c) 

Since Po = 1, Pl = -t, K~l = -tW, and K~o = 
K~l = 0, 

w2R iE dw ." h= ~~- ~~ 
2[w2R2 _ E2d2] 2[w2R2 _ E2d2] , 

(25) 

which is well-behaved for all values of the field as 
long as IXI ~ dj2. 

However, if we proceed to m > 1, the denominator 
in (24b) and (24c)will vanish unless the inequality for 
X is made more stringent. Finally, there will be, for 
any fixed X, an integer mo such that 

mod> 21XI. 

For all integers from mo on there exists a value Em of 
the field which annuls the mth denominator. The value 
is given by 

(26) 

These field values form an infinite sequence having 
E = 0 as a limit. This situation precludes adiabatic 
connection of the bands for finite field with those for 
zero field unless the numerators also vanish for those 
field values. 

What we ask for in the above is precisely that the 
system of inhomogeneous equations 

im Edf~m - wRf~m = K~m' (27a) 

-wRf~m - im Edf~m = K~m' (27b) 

have a solution when the determinant of the coeffi­
cients does vanish. This requires that 

wRjim Ed = K~mjK~m 

simultaneously with 

w2R2 = m2E2d2
• 

(28) 

(26) 

Let us look at the case m = 2 to see under what 
conditions (28) and (26) are simultaneously obeyed. 
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A little manipulation of (22b) reveals that 

K~2 = w(R - l)Hn~ - n~] - twnl + tW(:J2' 
(29a) 

K~2 = lwfM2(R - l)nl - I}, (29b) 

when w2R2 = 4E2d2,J~l = 2/3R andftl = -iw/6Ed. 
Without too much difficulty, Eq. (28) can be solved 

for f12 showing that Eqs. (26) and (28) can be simul­
taneously solved only if f32 = HI - (IX[2jd2

)] which 
is i when X = !d, making W(k) a Taylor expansion 
of (16b) to second order in E. 

We may infer from this the following. If we analyze 
the fairly general two-band case 

00 

W(k) = w L (:JmEm cosm kd 
m=O 

and look for a solution pair having the asymptotic 
form (8), then there is an infinite number of values 
Em of the electric field obeying (26) for which we fail 
in this objective. If we start out by imposing the 
asymptotic phase behavior through the substitution 
(11), and thereupon circumscribe the solution by the 
substitution (19), we find that f(k) becomes infinite 
at those field values. It is thus generally not possible 
to distinguish solution (8) from solution (9) across such 
a singular field value. Since the sequence offield values 
Em forms an infinite set converging toward zero, the 
difficulty persists for any electric field, however 
small. The connection of Bloch functions at finite 
field with those at zero field is thus generally not 
possible. Exceptions to this rule exist, but they arise 
from a numerical relationship between the parameters 
which does not seem to have any physical basis. 

4. EXAMPLE OF UNCONNECTED BANDS 

It is relatively difficult to find examples of the 
"normal" situation even in the two-band case because 
our proof precludes simple analytic behavior of the 
solutions of (5) or (6) in the neighborhood of E = o. 
We do, however, have a sample case of the solutions 
of (6) having "normal" behavior. It is found that the 
solutions (8) and (9) switch identity at every singular 
field value Em. We shall exhibit this case in the follow­
ing example which is somewhat reminiscent of the 
Kronig-Penney model. 

Let X be constant [which is no real restriction as 
pointed out in (10)] and let W(k) have the appearance 
shown in Fig. 1: generally a constant W with high­
wall spikes at a distance a from each other. These 
spikes will be taken as b-function spikes whose integral 
equals Ll. These spikes are of course the ones that 

w 

- a 

FIG. 1. Energy difference vs k in the model treated in Sec. 4. 

disturb the solution which would be otherwise 
connectable as in (14). 

For the present case we wish to discuss both solution 
pairs. The unsymmetric phase (11) was chosen for the 
specific purpose of showing power series expansion 
and will now be discarded. We make instead the sym­
metric ansatz 

and take X = 1 as suggested by the transformation 
(10). The solution pair (14) is then still one of the 
valid solutions outside the spikes. We call it ({it With 
(30) it takes the form 

(R + l)i [. W ] ({i+ = -- exp I-Rk 
1 2R 2E' 

(3Ia) 

(R - l)i [W ] ({i+ = -- exp i-Rk 
2 2R 2E' 

(3Ib) 

where R is given by (15). The other solution pair of 
the equation system (6), which with (30) reads 

i(d({il/dk) = - [W(k)/2E]({il - ({i2' 

i(d({i2/dk) = [W(k)/2E]({i2 - ({ii' 

has the form 

(
R - l)i r W ] ({il = - 2R exp L - i 2E Rk , 

- (R + l)i [. W ] ({i2 = 2R exp -1
2E

Rk . 

(32a) 

(32b) 

(33a) 

(33b) 

The solutions (31) and (33) do not, however, solve 
the equation system (32) entirely because of the spike 
of strength ~ in W(k). Inserting this spike into (32) 
means that 

({iI(high) = ({il(lOW) exp [iLl/2E], (34a) 

({i2(high) = ({i2(lOW) exp [- i~/2E]. (34b) 

The total phase shift of each solution over a period 
is the sum of the phase in (31) or (33), setting k = a 
plus the phase (34). Because of this latter the solution 
pairs (31) and (33) fail to obey Floquet's theorem. We 
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have instead 

IPi(k + a) = IPi(k) exp [i(WRa + ~)/2E], (35a) 

IPt(k + a) = IPt(k) exp [i(WRa - ~)/2E], (35b) 

linear superposition. Denote by S+ the solution pair 
(31) and by S- the pair (33). A solution S obeying 
Floquet's theorem is then obtained by setting 

(36) IPi(k + a) = IPi(k) exp [- i(WRa - ~)/2E], (35c) 

IP"2(k + a) = IP"2(k) exp [-i(WRa + ~)/2E]. (35d) 
However, (31) and (33) are still solution pairs from 
which the Floquet solutions may be obtained by 

Let the unknown Floquet factor be A.. Substitution of 
(31), (33), (35), and (36) into the Floquet condition 
for S yields 

(
R + I)! ( . W Ra + ~ 1) ---- expl -A 

2R 2E (
R - 1)! ( . - W Ra + ~ 1) - ---- exp I - A 

2R 2E 

(
R - I)! ( . W Ra - ~ 1) ---- exp I - A 

2R 2E (
R + I)! ( . -W Ra - ~ 1) ---- exp I - A 

2R 2E 

= o. (37) 

With 

(38) 
this becomes 

cos y = - 1 + - cos + - I - - cos ----I ( I ) W Ra + ~ 1 ( I ) W Ra - ~ 
2 R 2E 2 R 2E 

(39) 

or 

WRa ~ I. WRa . ~ 
cos y = cos -- cos - - - sm -- sm - . 

2E 2E R 2E 2E 
(40) 

Both (39) and (40) indicate that for small field R in Eq. (15) is close to and cos y differs little from 
cos [(WRa + ~)/2E]. Equation (39) shows particularly clearly in which way the solution does depart from this 
value. cos y is the superposition of two waves whose amplitudes sum to one and whose phases are not related. 
This means that cos y cannot reach ± 1, and sin y cannot change sign. The angle y thus stays locked in two 
quadrants while the phases on the right are many times 217. To see the effect on the solution S we return the 
result into (36) and (37). We find after considerable manipulation 

p! = exp [-i WRaJ s~n y + t(1 + R-
1
) s~n [CWRa + ~)/2E] + tel - R=1) s~n [(WRa - ~)/2E]. (41) 

P~ E sm y - tel + R-1) sm [(WRa + ~)/2E] - t(1 - R 1) sm [(WRa - ~)/2E] 

It is seen that the ratio is either very large or very small, according to whether 

±sin y ~ sin [(WRa + ~)/2E]. (42) 

As the field E changes, the sign of sin y cannot change, but the sign of the right-hand side in (42) switches 
whenever WRa + ~ = 2ml7E, which are the previously encountered singular field values (26). From (41) and 
(42), it is recognized that at these values the identity of the two bands is switched each time. 

Clearly the resGlt of this model case cannot describe entirely what happens when many bands are present. 
But the result obtained here, a switching of identity when the phases cpq cross, is in line with what generally 
happens in adiabatic connection. It follows from this that the effective-mass approximation cannot get its 
validity from an adiabatic argument. 
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Angular Momentum and the Kerr Metric 
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For Kerr's rotating metric, it is shown that -ma is the angular momentum of the body where m is 
the mass and a is the rotation parameter. This is true even for large m and a. 

I. INTRODUCTION 

In a previous paper! it was shown that when a is 
sufficiently small so that terms of higher power than 
the first are negligible, -ma is the angular momentum 
of a slowly rotating mass shell. It was also pointed 
out that a slowly rotating mass shell is not the only 
source for the Kerr metric to first order in a; other 
sources are, e.g., a slowly rotating solid sphere of 
perfect fluid, many concentric shells, etc. The purpose 
of this paper is to find the expression for the angular 
momentum generated by any body which has the Kerr 
metric exterior to it. This is accomplished by integrat­
ing the conservation law over all space-time and 
applying a generalized form to the divergence theorem 
to this integral. 

II. CONSERVATION LAWS AND CONSERVED 
QUANTITIES 

Some of the results of this section are well known, 
but to facilitate a comparison between the results of 
Trautman and those of Komar, we give a short 
review here. The conservation law of general relativity 

(1) 

yields conserved quantities in spaces with symmetries. 
The isometry group associated with these symmetries 
is generated by a Killing vector ~" which satisfies the 
equation ~,,;v + ~v;" = O. Contraction of Eq. (1) 
with' the Killing vector and integration over all 
space-time 0' yields2 

0= J.. (~"T"v;v) d~. (2) 

By using the n-dimensional form of the divergence 
theorem,3 we can transform Eq. (2) into an integral 

1 J. M. Cohen, J. Math. Phys. 8, 1477 (1967). 
2 The integrand is transformable into a divergence since .; is a 

Killing vector, i.e., $pT"V;v = (l;pTpv);. - 1;,,;vTPv = (I;.TW);v. 
3 A convenient form of this divergence theorem is 

(b". dV= ( b"da", J,,11 Jaa 
where a denotes an n-dimensional surface with surface elements dV 
and oa denotes its boundary with surface element da", For a 
derivation of this formula see, e.g., J. L. Synge, Relativity, the General 
Theory (North-Holland Publishing Company, Amsterdam, 1960). 

over the boundary of 0', 

(3) 

If the source is bounded in space or falls off suffi­
ciently rapidly at spatial infinity, the integral (3) 
reduces to the difference of the value of a integral 
over two different spacelike surfaces. Thus the 
integral is independent of the spacelike surface and 
consequently is a conserved quantity': 

J = L ~"TJlv·dO'v· (4) 

Here ~ denotes a three-dimensional spacelike surface 
and dO'v its surface element. Since the stress-energy 
tensor is related to the Einstein tensor via Einstein's 
equations, the conserved quantity J in Eq. (4) can be 
expressed in terms of geometrical quantities5 : 

87TJ = L ~"G"v dO'v' (5) 

If the Killing vector ~" is tangent to the spacelike 
surface ~, then the Einstein tensor G"v in Eq. (5) can 
be expressed in terms of the second fundamental form6 

Pi} of the spacelike surface. When this is done, the 
integrand of Eq. (5) can be expressed as a divergence 
since ~" is a Killing vector. Finally, application of the 
divergence theorem3 yields 

where a~ denotes the two-dimensional boundary 
of ~ and da; is an area element of a~. 

• This is a well-known result which can be found, e.g., in A. 
Trautman in Gravitation, L. Witten, Ed. (John Wiley & Sons, Inc., 
New York, 1963), Eq. (5-38). 

• This conserved quantity (5) differs in general from that of 
Komar [A. Komar, Phys. Rev. 127, 1411 (1962)], which takes the form 
8rrJ = S ~ ';pRPv dav. (Komar's conserved quantity is obtained by 
applying the procedure of Sec. II to d' * dl; = 0.) The two expressions 
agree if R vanishes or if 1Jpv vanishes for the particular components 
fixed via I; and L. 

6 Y. Foures-Bruhat in Ref. 4. 

905 
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III. APPLICATION TO THE KERR METRIC 

If the Killing vector ~Il generates a rotation, then 
the conserved quantity J is an angular momentum.! 
Using Eq. (6), we can find the angular momentum 
of any body which generates the Kerr metric7 by 
considering only the asymptotic metric at large 
distances from the source and the Killing vector 
ojocp. By integrating Eq. (6), we find that any source 
which generates the Kerr metric has the angular 
momentumS 

J= -mao (7) 

This result (7) is valid for large a as well as large­
m. 9- 11 
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of both m and a small. 

9 In terms of an integral over o~, Komar's conserved ,,.tantity 
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takes the coordinate-free form 

161TJ = r * dg. hI:. 
Application of this formula to the Kerr metric also yields the result 
(7). 

10 For a discussion of a application of Komar's formula to an 
axially symmetric metric see R. A. Matzner and C. W. Misner, Phys. 
Rev. 154, 1229 (1967). Unfortunately their results are difficult to 
apply to the Kerr metric since their form of the metric becomes very 
complicated for Kerr's solution. 

11 By a coordinate transformation similar to that of Eq. (9) of Ref. 
I, the charged metric of E. T. Newman, E. Couch, K. Chinnapared, 
A. Exton, P. Prakash, R. Torrence [J. Math. Phys. 6, 918 (1965)1 
can be put in the form 

ds" = -dt" + rr:.-I(dt + a sin" 0 drp" 

where 
f= 2mr - eO, 

:E = R" + a" cos" 0, 

Il = R" + a" - f 
Substitution of this metric into Eq. (16) yields the angular momentum 
J = -ma, the same as that for the Kerr metric. Also, as for the Kerr 
metric, this result is valid for large a as well as large m. The above 
form of the rotating charged metric was found independently by 
Brandon Carter (private communication). 
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The X and Y functions of radiative transfer satisfy a system of integro-differential equations which 
form the basis of an effective numerical treatment. These integro-differential equations are derived from 
the integral equation for the source function and the differential equation for the resolvent. 

I. INTRODUCTION 

The X and Y functions are important functions 
in radiative-transfer theory.! Their properties are 

* This research is supported and monitored by the Advanced 
Research Projects Agency under Contract No. SD-79. Any views or 
conclusions contained in this Memorandum should not be inter­
preted as representing the official opinion or policy of ARPA. 

11. W. Busbridge, The Mathematics of Radiative Transfer (Cam­
bridge University Press, London, 1960). 

best determined analytically through their nonlinear 
integral equations. From the computational view, 
though, they are best treated as solutions of a system 
of integro-differential equations with initial conditions. 
The aim of this note is to derive the integro-differential 
equations from the integral equation for the source 
function, making use of properties of the resolvent. 

This note is self-contained. 
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If the Killing vector ~Il generates a rotation, then 
the conserved quantity J is an angular momentum.! 
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of any body which generates the Kerr metric7 by 
considering only the asymptotic metric at large 
distances from the source and the Killing vector 
ojocp. By integrating Eq. (6), we find that any source 
which generates the Kerr metric has the angular 
momentumS 

J= -mao (7) 

This result (7) is valid for large a as well as large­
m. 9- 11 
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takes the coordinate-free form 

161TJ = r * dg. hI:. 
Application of this formula to the Kerr metric also yields the result 
(7). 

10 For a discussion of a application of Komar's formula to an 
axially symmetric metric see R. A. Matzner and C. W. Misner, Phys. 
Rev. 154, 1229 (1967). Unfortunately their results are difficult to 
apply to the Kerr metric since their form of the metric becomes very 
complicated for Kerr's solution. 

11 By a coordinate transformation similar to that of Eq. (9) of Ref. 
I, the charged metric of E. T. Newman, E. Couch, K. Chinnapared, 
A. Exton, P. Prakash, R. Torrence [J. Math. Phys. 6, 918 (1965)1 
can be put in the form 

ds" = -dt" + rr:.-I(dt + a sin" 0 drp" 

where 
f= 2mr - eO, 

:E = R" + a" cos" 0, 

Il = R" + a" - f 
Substitution of this metric into Eq. (16) yields the angular momentum 
J = -ma, the same as that for the Kerr metric. Also, as for the Kerr 
metric, this result is valid for large a as well as large m. The above 
form of the rotating charged metric was found independently by 
Brandon Carter (private communication). 
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The X and Y functions of radiative transfer satisfy a system of integro-differential equations which 
form the basis of an effective numerical treatment. These integro-differential equations are derived from 
the integral equation for the source function and the differential equation for the resolvent. 

I. INTRODUCTION 

The X and Y functions are important functions 
in radiative-transfer theory.! Their properties are 

* This research is supported and monitored by the Advanced 
Research Projects Agency under Contract No. SD-79. Any views or 
conclusions contained in this Memorandum should not be inter­
preted as representing the official opinion or policy of ARPA. 

11. W. Busbridge, The Mathematics of Radiative Transfer (Cam­
bridge University Press, London, 1960). 

best determined analytically through their nonlinear 
integral equations. From the computational view, 
though, they are best treated as solutions of a system 
of integro-differential equations with initial conditions. 
The aim of this note is to derive the integro-differential 
equations from the integral equation for the source 
function, making use of properties of the resolvent. 

This note is self-contained. 
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II. DEFINITIONS 

The X and Y functions of radiative transferl are 
defined by the relations: 

X(x, 1-') = (4/}..)J(x, x, 1-'), (1) 

Y(x, 1-') = (4/}")J(O, x, 1-'), (2) 

where the source function J = J(t, x, 1-') is defined as 
the solution of the Fredholm integral equation 

J(t, x, 1-') = (Af4) exp [-(x - t)/I-'] 

+ (A/2) So"'Eilt - yI)J(y, x, 1-') dy, 

o ~ t ~ x, 0 ~ I-' ~ 1. (3) 

As usual, El is the first exponential integral function 
given by 

El(r)=Sole-rlzdz/z, r>O. (4) 

Our aim is to provide a straightforward derivation of 
the differential-integral equations 

X.,(x,l-') = (A/2)Y(x, 1-') Sol Y(x, z) dz/z, (5) 

Y.,(x,l-') = -1-'-l y(x,l-') + (A/2)X(x, l-') f Y(x, z) dz/z, 

x> O. (6) 
and initial conditions: 

X(O,I-') = 1, (7) 

it is seen that 
w",(t, x) = <I>(t, X)w(X, x). (13) 

From Eq. (10) it follows that 

w(x, x) = g(x) + So'" K(x, y, x)g(y) dy; (14) 

Eq. (13) becomes 

w.,(t, x) = <I>(t, X)[ g(x) + So'" K(x, y, x)g(y) dy 1 (15) 

On the other hand, Eq (10) may be differentiated 
with respect to x to obtain 

w.,(t, x) = K(t, x, x)g(x) + So'" K.,(t, y, x)g(y)dy. (16) 

From this it follows that 

or 

<I>(t, x) = K(t, x, x), 

K.,(t,y, x) = <1>(1, x)K(x,y, x), 

K",(t,y, x) = K(t, x, x)K(x,y, x). 

(17) 

(1&) 

(19) 

Equations (17) and (19) are the desired relations. A 
numerical procedure for determining the resolvent K 
using (19) is given in Ref. 3. Equation (19) has been 
obtained earlier by Bellman, Ref. 4, and Krein, Ref. 5. 

Keeping in mind Eqs. (3) and (10), it is seen that 

Y(O,I-') = 1, I-' > 0, (8) J(t, x, 1-') = (A{4) exp [-(x - t)/I-'] 

which play such an important role in the numerical 
treatment of these functions.2 

m. DERIVATION 

Consider the general integral equation 

wet, x) = get) + (Af2) So'" E1{1t - yl)w(y,~) dy. (9) 

In terms of the Fredholm resolvent K, the solution 
may be represented in the form 

wet, x) = get) + So"'K(t, y, x)g(y) dy. (10) 

First, several important relations for the resolvent 
will be obtained. Upon differentiation with respect to 
x, Eq. (9) becomes 

w.,(t, x) = (Af2)E1(x - t)w(x, x) 

+ (Af2) So'" El(lt - yDw,,(y, x) dy. (11) 

Upon introduction of the function <1>, obtained as the 
solution of the integral equation 

<I>(t, x) = (A{2)E1(x - t) 

+ (A{2) 1"'E1(lt - yl)<I>(y, x) dy, (12) 

I R. Bellman, H. Kagiwada, R. Kalaba, and S. Ueno, J. Quant. 
Spectry. & Radiative Transfer 6, 479 (1966). 

+ So'" K(t, y, x)(A{4) exp [-(x - Y)/I-'] dy. 

(20) 

Upon differentiation with respect to x, this equation 
becomes 

J ",(t, x, 1-') 

= -1-'-I(Af4) exp [-(x - t)/I-'] + (Af4)K(t, x, x) 

+ (A{4) So'" K",(t, y, x) exp [-(x - Y)/I-'] dy 

- (Af4)1-'-1 So'" K(t, y, x) exp [-(x - Y)/I-'] dy. (21) 

Upon referring to Eq. (19) for K"" this becomes 

J",(t, X,I-') 

= -1-'-I(Af4) exp [-(x - t)/I-'] + (Af4)K(t, x, x) 

+ (Af4)K(t, x, x) So'" K(x, y, x) exp [-(x - Y)/I-'] dy 

- (A{4)1-'-1 1'" K(t, y, x) exp [-(x - Y)/I-'] dy. (22) 

3 H. Kagiwada, and R. Kalaba, J. Math. Phys. Sci. 1, 109 (1967). 
4 R. E. Bellman, Proc. Am. Math. Soc. 8,435 (1957). 
6 M. G. Krein, "On a New Method of Solving Linear Integral 

Equations of the First and Second Kind," Ook!. Akad. Nauk. 
SSSR 100, 413 (1955). 
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It is then seen that 

Ja;(t, x, u) = -u-1J(t, x,l-') 

+ K(t, x, X){ (A/4) + (J./4) La; K(x, y, x) 

X exp [-(x - Y)/I-'] dy }, (23) 

Jit, x, u) = -1-'-IJ(t, x,l-') + K(t, x, x)J(x, x, 1-'). 

. 

\ 

(24) 

This equation can be utilized to compute J as in Ref. 6. Al 

In particular for I = 0, 

\. 
\ 

I'" Ja;(O, x, "') = -1-'-IJ(O, x, 1-') + <1>(0, X)J(X, x, 1-'). 

(25) 
Note, though, that 

<I>(t, x) = 2 fJ(t, x, z) dz/z, (26) 

which follows from Eqs. (3), (4), and (12), by using 
the principle of superposition. In view of the defini­
tions of X and Yin Eqs. (1) and (2), the last two 
relations imply that the basic equation (6) is true. 

To establish Eq. (5), Eq. (3) is rewritten in the form 

J(x - t, X,I-') 

='(A/4) exp (-t/I-') 

+ (A/2) La; E1(/x - t - yI)J(y, x, 1-') dy 

= (A/4) exp (-t/I-') 

+ (A/2) La;E1(IY - tl)J(x - y, x, 1-') dy. (27) 

Differentiation with respect to x yields 

(d/dx)J(x - t, x, 1-') 

= (A/2)E1(lx - tI)J(O, x, 1-') 

+ (A/2) La; EtCly - tl)[d/dx)J(x - y, X,I-')] dy. (28) 

According to Eq. (12) for the function <1>, the solution 
of the above equation is 

(d/dx)J(x - I, x, 1-') = J(O, x, 1-')<1>(/, x). (29) 

In particular for t = 0, there results 

(d/dx)J(x, x, 1-') = J(O, x, 1-')<1>(0, x). (30) 

In view of Eqs. (I), (2), and (26), the last relation 
implies the desired differential-integral equation (5). 

The initial conditions in Eqs. (7) and (8) follow 
directly from the definitions of X and Y and the 
integral equation (3). 

e R. Bellman, H. Kagiwada, and R. Kalaba, J. Quant. Spectry. & 
Radiative Transfer 6, 291 (1966). 

............... r---.. 

FIG. 1. Approximate curve oflowest eigenvalue as a function of 
length for the kernel 1E1(I' - yl). 

IV. DISCUSSION 

As noted above, the differential-integral equations 
(5) and (6) together with the initial conditions of 
Eqs. (7) and (8) form the basis of an effective com­
putational procedure for X and Y.2 The integrals 
are approximated by sums and the resultant system of 
ordinary differential equations is integrated numer­
ically from x = ° to x = the maximum desired 
thickness. For a given value of A. and for a set of 1-', 
the X and Y functions are produced for all thicknesses 
between ° and the maximum thickness. This procedure 
is useful for ° < A ::;; 1. 

For A> 1, the phenomenon of criticality occurs. 
In the course of the integration, the X and Y functions 
become unbounded. The value of x when X and Y 
become very large, say ~1()3, is a very close lower 
bound on the critical length for that value of A.. Such 
a survey of critical lengths for various A > 1 leads to 
an approximate curve of the lowest eigenvalue of Eq. 
(3) as a function of x. Figure 1 shows such a curve 
and the comparison shows points plotted from a table 
ofWing.7 

These results may be extended to other kernels of 
displacement type.s 

7 G. Milton Wing, J. Math. Anal. Appl. 11, 160 (1965). 
8 H. Kagiwada and R. Kalaba, Rand Corp., Santa Monica, 

Calif. Report RM-5.186-PR, 1966 (unpublished); Intern. J. Compo 
Math. (to appear). 
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A partial-differential-integral equation is derived in this paper for the angular distribution of the 
radiation which is diffusely transmitted through an inhomogeneous, isotropically scattering, spherical 
shell when there is a constant net flux of radiation normally incident on the inner surface. An equation 
is also derived for the strength of the diffusely reflected radiation when the shell is illuminated at each 
point on the outer surface by constant isotropic incident radiation. 

The equations obtained appear to lend themselves well to numerical solution. Astrophysically, the 
situation corresponds to determining the brightness of a spherical planetary nebula. As far as is known, 
the equations are new and exact. 

I. INTRODUCTION 

In recent years the scattering of light in a finite slab 
has been studied extensively, both analyticallyl-3 and 
computationally.4.5 However, it is important to 
consider the effects of curvature in various problems 
of radiative transfer in planetary and stellar atmos­
pheres, nova envelopes, gaseous nebulas, and of 
neutron transport in spherical reactors. This has led 
to the study of radiative transfer in spherical media, an 
investigation which is in its infancy from the analytical 
and computational viewpoints.6- 19 It is the aim of this 

1 S. Chandrasekhar, Radiative Transfer (Oxford University Press, 
London, 1950). 

2 I. Busbridge, The Mathematics of Radiative Transfer (Cambridge 
University Press, London, 1960). 

3 V. V. Sobolev, A Treatise on Radiative Transfer (D. Van Nostrand 
Company, Inc., Princeton, N. J., 1963). 

• R. Bellman, R. Kalaba, and M. Prestrud, Invariant Imbedding 
and Radiative Transfer in Slabs of Finite Thickness (American 
Elsevier Pub. Co., New York, 1963). 

6 R. Bellman, H. Kagiwada, R. Kalaba, and M. Prestrud, In­
variant Imbedding and Time-Dependent Transport Processes (Ameri­
can Elsevier Publishing Company, New York, 1964). 

6 P. B. Bailey, J. Math. Ana!. Appl., 8, 144 (1964). 
7 P. B. Bailey and G. M. Wing, J. Math. Anal. Appl. 8, 170(1964). 
8 D. Barbier and G. W. Curtis, Ann. Astrophys. 19, 129 (1956). 
9 V. I. Barkov, Opt. Spektrosk. 14, 537 (1963) [Opt. Spectrosk. 

14,285 (1963»). 
10 R. Bellman and R. Kalaba, Proc. Natl. Acad. Sci. U.S. 43, 514 

1957. 
11 M. A. Heaslet and R. F. Warming, J. Quant. Spectry. Radiative 

Transfer 5, 669 (1965). 
12 J. Lenoble and Z. Sekera, Proc. Nat!. Acad. Sci. U.S. 47,372 

(1961). 
13 I. N. Minin, Astron. Zh. 41,662 (1964) [SOy. Astron.-AJ 8, 

528 (1965»). 
14 I. N. Minin and V. V. Sobolev, Astron. Zh. 40, 496 (1963) 

[SOy. Astron.-AJ 7,379 (1963»). 
16 V. V. Sobolev and I. N. Minin, Iskusstv. Sputniki Zemli 14, 7 

(1962) [Planet. Space Sci. 11,657 (1963»). 
16 I. N. Minin and V. V. Sobolev, Kosmich. Issled. 1,227 (1963) 

[Cosmic Res. 1, 190 (1963)]. 
17 I. N. Minin and V. V. Sobolev, Kosmich. Issled. 2, 610 (1964) 

[Cosmic Res. 2, 529 (1964»). 
18 V. V. Sobolev, Astron. Zh. 37, 3 (1960) [SOY. Astron.-AJ 4, 

1 (1960»). 
10 H. K. Sen, Astrophys. J. 110, 276 (1949). 

paper to derive an equation for the diffuse trans­
mission coefficient of a shell with an absorbing core, 
radiation being normally incident on the inner surface 
of the shell. Within the shell, absorption and isotropic 
scattering take place. 

Our plan is first to derive an equation for the 
intensity of the radiation which is diffusely reflected 
from a spherical-shell atmosphere which is illuminated 
isotropically at each point on its surface. Within the 
shell, multiple scattering and absorption processes 
take place. Then having derived this equation for the 
reflection function we can proceed to discuss the 
desired transmission process. 

In the astrophysical context, this problem corre­
sponds to the radiative equilibrium of a spherical 
planetary nebula in the region of UV radiation, whose 
boundary conditions, due to Milne, are as follows: 
There is no incident radiation on the outer boundary 
and the diffuse flux across the inner surface vanishes. 

II. A REFLECTION FUNCTION 

Consider a spherical shell with an inner radius of 
Xo and an outer radius of x. These are geometrical and 
not optical distances. The shell is composed of an 
inhomogeneous material which absorbs radiation and 
scatters it isotropically. Assume that when energy 
passes through a small geometric distance ~ at a 
distance y from the center, the fraction a(y)~ + o(~) 
is absorbed. The fraction /l(y) is reradiated isotrop­
ically. For simplicity, we shall assume that a(y) = 1, 
though in the discussion in Sec. V we present the 
equations for the general case. We suppose that the 
diffuse flux across the surface of the core is zero 
(Milne's boundary condition). 

The shell is illuminated on the outer boundary with 
one unit of energy per unit area per unit of time. At 

909 
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FlO. 1. The physical situation. 

each point on the outer boundary the incident radia­
tion is conical in form, and the direction cosine of an 
incident ray with respect to the local inward normal 
is u (see Fig. 1). Consider the reflection coefficient 
p(v, u, x): 

p(v; u, x)dv = total reflected energy emanating 
from the outer surface y = x per 
unit of area on the outer surface 
per unit of time, the direction (1) 
cosine being between v and v + dv 
with the local outward-drawn 
normal and the incident radiation 
as described above. 

In the usual manner of invariant imbedding, the 
reflection coefficients for shells of outer radius x + a 
and x can now be related. 

If radiation makes an angle 0 with the local normal 
at a distance x, it makes an angle 0 - oc with the local 
normal at x + a (see Fig. 2). Here 

cos (0 - oc) - cos 0 = (-oc)( -sin 0) + .. " (2) 

where powers of oc greater than the first are neglected. 
In addition 

w = ocx (3) 
and 

w(1 + alx) = a tan 0 + o(a), (4) 

so that 
IX = (fl/x) tan 0 + o(fl). (5) 

In view of Eq. (2), this yields 

cos (0 - oc) - cos 0 = (alx) sin2 Oleos 0 + o(fl). (6) 

In addition, from Eq. (6) it is noted that if radiation 
falls in the direction-cosine interval (v, v + dv) at the 

radius x, at the radius x + fl it will fall in the interval 

(v + [(1 - v2)lvx]fl, v + dv 

+ {[I - (v + dV)2]/X(V + dv)}fl). 

The length of this cosine interval dv· is 

or 

dv· = dv[ 1 + :vC ~ v);] + o(fl) 

= dV[l + v( -2v) - (1 - V2)~] , (7) 
v2 x 

dv. = dV[l _ 1 + v
2 
fl] , 

v2 X 
(8) 

where terms involving powers of fl higher than the 
first are omitted. 

Now consider the uniform conical radiation 
incident on the shell of outer radius x + fl. Write 

--A P V + -=- fl, u. + --=-- fl, x + fl dV* 
(

X )2 ( 1 v
2 

1 u
2 

) 

x + I..l xv xu 

= (1-;)P(V,U,X)dV(I-~)(x:fl)2 

+ [~+ rlp(V"U'X)~dV'] 
u Jo v' 

x A(X>[~ + {P(V,U"X)d;' dV], (9) 

which is correct to terms involving fl2. The radiation 
incident on the surface y = x + fl is considered to 
have a direction cosine such that the ray will have 
direction cosine v when incident on the shell of outer 
radius x. ~his is also done for the emerging radiation. 

FlO. 2. Changes in angles. 
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The energy per unit area on y = x + Ll per unit time 
is taken to be [x/ex + Ll)]2 rather than unity, so that 
the energy per unit area on y = x per unit time will 
be unity. In addition, the interval of direction cosines 
is selected to be dv· for the surface y = x + Ll, the 
corresponding interval for y = x then being dv. 

Now consider the terms on the right-hand side. 
The first term accounts for the energy emerging 
through the surface y = x + Ll where the diminutions 
due to absorption in the shell from y = x to y = x + 
Ll and the differing surface areas have been taken into 
account. The last term is the product of three factors. 
The first factor is the rate of production of absorbed 
radiation in a partial shell of unit area on y = x and 
extending to y = x + Ll. The fraction of the energy 
reemitted is A(X), and the probability that such energy 
will ultimately emerge from the top surface with 
direction cosine in the interval (v, v + dv) is given by 
the last factor. 

Observe that the equation can be multiplied by 
«x + Ll)/X)2, and the factors due to geometric 
convergence will disappear. (The last term has Ll as a 
factor.) The desired relation is found by expanding in 
powers of Ll and equating the coefficients of Ll, 

1 - u2 1 - v2 1 + v2 

Px + -- Pu + -- p" - -- p 
xu xv xv2 

= - - + - p + - - + p(v', u, x)-(
1 1) A [1 i1 dV'] 
u v 2 u ° v' 

X [1 + IIp(V, u', x) dU} x ~ xo' (10) 

As an initial condition 

p(v, u, xu) = 0, (II) 

because there is no scattering medium in the spherical 
shell of thickness zero. 

III. A TRANSMISSION FUNCTION 

This section considers the desired transmission 
process. Let unit energy per unit area per unit time be 
normally incident on the inner surface y = Xo of the 
shell. It is desired here to determine the angular 
dependence of the diffusely transmitted radiation. Let 

t(v, x)dv = energy diffusely transmitted per 
unit area on the outer surface 
y = x per unit time, the direction 
cosine being between v and v + dv, (I2) 
the incident radiation as described 
above, and the shell and the core 
as described earlier. 

This function satisfies the relation 

( 
1 v

2 
) t v + ~v A, x + Ll dv* 

= t(v, x) dv(1 - Ll/v)(x/(x + A»2 

correct to terms involving Ll2, where dv· and p(v, u, x) 
retain their earlier meanings. This leads to the equation 

1 - v2 1 + v2 1 2 
tx + -- t" - -- t = - - t - - t 

xv xv2 
V X 

+ [(:ofe-(X-"O) + ft(V" x) d;']A(X) 

[
1 (I dU'] 

X :2 + Jo p(v, u', X)T ' (14) 

or 

I_v2 I-v2 

t.,+--t,,---t 
xv xv2 

= - ~ t + [ (~fe-("-Xo) + ft(v" x) d;'] 
X A~) [1 + L1 p(v, u', x) dU} (15) 

for an initial condition 

t(v, xu) = o. (I 6) 

IV. NORMALIZATION OF EQUATION 

It is convenient to introduce certain normalizations. 
For the reflection problem involving conical inputs on 
the outer surface of the shell, let the net flux incident 
be 7T. Then the intensity of the diffusely reflected radia­
tion rev, u, x) is 

rev, u, x) = 7Tp(V, U, X)(27T)-lV-1U• (17) 

Next, the function R is introduced, 

rev, u, x) = R(v, U; x)(4V)-1. (18) 

This implies 
p(v, u, x) = R(v, u, x)/(2u). (I 9) 

The equation for R is 

R., + 1 - v
2 

R" + 1 - u
2 

Ru + (1. + !) R _ u
2 

+ v
2 

R 
xv xu U V XU 2

V
2 

= A(X>[ 1 + ~ fR(V" u, x) dV'/V'] 

X [1 + ~ fR(V, u', x) dU'/U} x> xu, (20) 
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and the initial condition is 

R(v, u, xo) = O. (21) 

For the diffuse transmission process, the net 
incident flux is also normalized to. be 7r rather than 
unity, and the intensity of the diffusely transmitted 
radiation is denoted by T(v, x)/(4v). This means 

T(v, x) = 7rt(v, x) _1_ 
4v 27rv 

(22) 

or 
T(v, x) = 2t(v, x). (23) 

The equation for Tis 

T + 1 - v
2 

T. _ 1 - v
2 

T 
'" xv " xv2 

= _! T + [(xo)2e-(<I>-,"O) +! (IT(v'' X)dV'] 
v x 2 Jo v' 

X A(X)[1 +! [lR(v, u', x) dU'], 
2 Jo u' 

x> xo, (24) 

along with the initial condition 

T(v, xo) = o. (25) 

V. DISCUSSION 

The equations for Rand T would seem to be quite 
useful for computational purposes. Some results for 
the reflection coefficient are available in Refs. 20 and 

10 R. Bellman and R. Kalaba, Proc. Natl. Acad. Sci. U.S. 54, 
1293 (1965). 

21, 'and the authors plan to undertake numerical 
experiments on the system for Rand T. 

These considerations readily generalize to the case 
of anisotropic scattering, though, of course, the 
computational load is vastly increased. 

For the case in which a = a(y), the equations for 
Rand T become 

R + 1 - v
2 

R + 1 - u
2 

R 
'" tI .. xv xu 

+ a(x) - + - R - -- R (1 1) u
2 + v2 

U V XU 2
V

2 

= a(X)A(X)[ 1 + ~ fR(V', u, x) dV'IV'] 

X [1 + ~ llR(V, u', x) du'IU'] (26) 

and 

= - a~) T + [(:0)2 exp (- s..:a(y) dy) 

+! [1 T(v', x) dV'] 
2 Jo v' 

X a(x)A(x) 1 + - R(v, u', x)- , [ ILl dU'] 
2 ° u' 

X> Xo. (27) 

ACKNOWLEDGMENT 

The authors are indebted to Paul Bailey of Sandia 
Corporation for a careful reading of the manuscript. 

11 R. Bellman, H. Kagiwada, and R. Kalaba, J. Computational 
Phys. I, 245 (1966). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 6 JUNE 1968 

Electromagnetic Two-Body Problem for Particles with Spin 

A. SCHILD 

The University of Texas, Austin, Texas 
AND 

J. A. SCHLOSSER 

Louisiana State University, Baton Rouge, Louisiana 

(Received 8 October 1967) 

A. two-body ~yst~m is consi~ered .for cI~sical particles with char~e, spin, and magnetic moment. The 
partIcles move In cIrcular orbIts, with SpInS orthogonal to the orbItal plane, and they interact through 
ti.me-symmetric electromagnetic fields. Rigorous relativistic equations of motion and rigorous expres­
sIons fo~ the total energy and angular momentum of the system, including contributions from the field, 
are obtained. 

1. INTRODUCI10N 

The first paperl of this series outlined a program 
for the study of the relativistic motion and the Bohr 
quantization of a system of two classical particles in 
electromagnetic interaction. The principal device in 
carrying out such a program consists in starting with 
a F okker action principle. This results in time­
symmetric (half-retarded plus half-advanced) inter­
actions which permit periodic motions to which Bohr 
quantization can be applied. A Fokker action prin­
ciple also gives, in a natural manner, finite expressions 
for the energy, linear momentum, and angular 
momentum of a system, which automatically include 
contributions of the electromagnetic field. 

In the second paper2 of this series a Fokker action 
principle was obtained for particles, each of which 
have charge, spin, and a magnetic moment propor­
tional to the spin. In order to have a classical model 
of elementary particles with constant magnitude of the 
spin, a limiting procedure was adopted where the 
moment of inertia of each particle tends to zero while 
the spin remains finite. This required a renormalization 
of the mass. Renormalized equations of motion were 
obtained and renormalized expressions for the con­
served quantities of the system. 

In this paper the general results are applied to a 
two-body system with a geometry which is simple 
enough to permit the explicit calculation of the 
conserved quantities. The two particles move in 
concentric circles and have spins perpendicular 
to the plane of the orbits. 

2. THE GENERAL TWO-BODY SYSTEM 

The motion of a spinning particle is described by 
its world line XIl(S) and by its spin aIlV(s) = _aVIl• 

1 A. Schild, Phys. Rev. 131,2762 (1963). 
• A. Schild and J. A. Schlosser, J. Math. Phys. 6, 1299 (1965). 

Here s is the arc length given by 

ds2 = 'YJ". dx" dx', 'YJ". = diag (- - - +). (2.1) 

The spin is orthogonal to the world line, 

xlla IlV = 0, (2.2) 

where the dot denotes differentiation with respect to 
the arc length Xll = dXIl/ds. The particle is charac­
terized by its mass m, its charge e, a gyromagnetic 
ratio G which determines its magnetic moment I-'Ilv = 
Gall', and by the magnitude S of its spin, which is 
given by 

S2 = ta"vaIlV. (2.3) 

It is a consequence of the equations of motion that S 
is a constant. 

The two particles of the system will be distinguished 
by placing a bar over the quantities which describe the 
second particle: XIl(S), ijIlV(S), fii, e, G, S, ill = dxll/ds, 
etc. 

The time-symmetric electromagnetic field at x ll due 
to the charge and magnetic moment of the particle 
fii is given by 

Fllv = ovAJl - 0IlA.. (2.4) 

A" = e L: ,i"c5 ds + G L: ijll'ovc5 ds. (2.5) 

Here c5 is the Dirac delta function 

c5 = c5(~2), ~2 = e~Il' ~Il = Xll - xll, (2.6) 

0" = o/axll and, similarly, 0" = a/axil. At the posi­
tion of particle m, the part of Fllv which is orthogonal 
to the world line of m is 

H"v = F"v - xllxfl.Ffl.v - xvxfl.Fllfl.' xllHllv = O. (2.7) 

In the instantaneous rest frame of m, H describes IlV 
the magnetic field. 

913 
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The orbital equation of motion of particle m is 

mxl' = exvFvl' - tGa"PFap,1' 

(2.8) 

and the equation of motion for its spin is 

al'v - xl'xaaav - xVxaal'a = 2GHa[l'a\] , (2.9) 

where the square brackets denote skew symmetriza­
tion, e.g., A[l'v] = HAl'v - Avl')' The equations of 
motion have the first integrals xl"xJl = I and S2 = 
constant. 

The equations of motion of particle m are obtained 
from the above by interchanging barred and unbarred 
quantities in Eqs. (2.4)-(2.9). 

The total 4-momentum of the system is 

PI' 

= [em - tGaaPHap)xl' - al'vxv + eAI' - GFapxaaPI']s 

+ [em - tGaaPHap)~1' - al'vx: + eAI' - GFapxaaPI']' 

+ - dsds-, (f oof' f8 100

) oA 
8 -00 -«) 8 o~1' 

(2.10) 

where 

A = eex/(l'tJ + eGxl'al'VovtJ - eGxl'al'VovtJ 

- GGal'aaPl'oaoptJ. (2.11) 

Since ovtJ = -BvtJ, A is symmetric between the two 
particles. 

The total angular momentum of the system about 
the origin is 

Ll'v = [2(m - tGaaPHa/l)x[l'xv] - 2x[l'av]axa + al'v 

+ 2ex[I'A v] - 2GFapxax[l'a/lV]]s 

+ [2(m - tGaaPHa/l)x[l'xV] - 2x[l'av]axa + al'v 

+ 2ex[/lAv] - 2GFa/lxax[l'aPv]ls 

(2.12) 

It is understood that the term oAjoaav has been 
skew symmetrized with respect to IX and v. 

It follows from the equations of motion that the 
quantities PI' and Ll'v are independent of the choice 
of the point s on the world line of particle m and of 
the point s on the world line of particle m. This is the 
conservation of the linear and angular momentum 
of the system. 

.' 

FIG. I. Spinning particles in circular motion. 

3. THE SPECIAL TWO-BODY SYSTEM 

The results of a rigorous relativistic calculation 
will be given now for two particles in circular motion 
with spins parallel (or antiparallel) to the axis of 
rotation. The two-body system is shown in Fig. 1. 

The two particles are characterized by the constants 
m, e, G, a and m, e, G, a. The quantity a is positive 
if the spin of particle m is parallel to the axis r of 
rotation of the system, it is negative if the spin is 
antiparallel; similarly a may be positive or negative. 
The magnitudes of the spins are S = lal and S = lal. 

We choose as independent variables describing the 
motion the speeds v and v of the two particles and the 
angular velocity w of the system. The radii of the 
orbits are then derived variables given by 

r = vjw, f = vlw. (3.1) 

Another derived variable is the retardation angle (J, 

defined as the angle from 0 through which one 
particle turns during the time T = (Jjw which it takes 
light from the other particle to reach it. The retarda­
tion angle (J is the positive root of the retardation 
relation 

v2 + v2 + 2vv cos (J - (J2 = 0, (3.2) 

which can be read from Fig. 2. 
The orbital motion of the particles as a function of 

the time coordinate X4 = t is described by 

xl' = (~cos wt, ~ sin wt, 0, t), (3.3) 

xl' = ( - ~ cos wt, - £ sin wt, 0, t). (3.4) 

_ T=!l-~m 
m~·" 
r=~O 

FIG. 2. The retardation relation. 
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The spins of the particles are 

0 0 _V~SW) 
( -I 

0 0 -v sm wt 
allv = fJa 

0 0 o ' 
v cosOwt v sin wt 0 0 

(3.5) 

0 0 ~~SW) 
- ( -I 

0 0 v sm wt 
all' = fJa 

0 0 o ' 
-v c~ wt -v sin wt 0 0 

(3.6) 

where 

These spins satisfy the requirements xllallv = xllijllv = 
0, S2 = a2 , S2 = a2• 

The calculations of the equations of motion of the 
particles and of the conserved quantities for the system 
are long but straightforward. Eq. (2.9) for the spin 
allv and the corresponding equation for all v are 
satisfied identically, Of the orbital equations of 
motion, only the radial components given independent 
conditions on the variables v, v, w. They are 

mfJv + afJ3vw - eewy ~ 
dfJ 

x {y(l + vv cos fJ)(v + V cos fJ) + v sin fJ} 

- 2 d + (eGa + eGa)w "1- y(v + v cos fJ) 
dfJ 

x {y(1 + vv cos fJ)(v + v cos fJ) + v sin fJ} = 0, 

(3.8) 

- ~ d 
mfJv + afJ vw - eewy dO 

X {y(l + vv cos fJ)(v + v cos 0) + v sin fJ} 

d + (eGa + eGa)w2y - y(v + v cos 0) 
dfJ 

+ Ga Gaw3y .!!.. "I .!!.. 
dfJ dfJ 

x {y(l + vv cos O)(v + v cos 0) + v sin O} = O. 

(3.9) 
In these equations, 

"I = (0 + vv sin 0)-1, (3.10) 

and the differentiations with respect to fJ are to be 
carried out before the retardation relation (3.2) is 
used to determine 0. This remark also applies to the 
equations below, which give the conserved quantities. 

The symmetry of our two-body problem implies 
~~lat the. space origin 0 is the relativistic center of 
mass of the system. It follows that the only nonzero 
components of pll and L llv are the total energy E = p4 
of the system and the third component L = L12 of the 
angular momentum about O. These quantities are 
given by 

E = m(l - v2)! + m(l - v2)! + (eO + eGa)w2y 

+ 2GaGaw3y ~ "1(1 + vv cos 0), (3.11) 
dO 

L = fJa + pa - eey(l + vv cos 0) + 2(eGa + eGa)wy 

+ 3GaGaw2y ~ "1(1 + vv cos 0). (3.12) 
dO 
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It is shown that to Schrodinger's equation, one may associate a Markoff process in the Smoluchowski 
approximation with an external force acting on the system which is a measure of its interaction with the 
vacuum. This interaction is, in this scheme, responsible for the stochastic character of the motion. The 
physical interpretation of the usual momentum and energy operators emerges in a natural way from 
the theory. Thus, we are immediately led to Heisenberg's uncertainty relations. However, this interpreta­
tion of quantum mechanics is valid only within the limits of validity of Smoluchowski's equation. As a 
simple example, we treat the one-dimensional harmonic oscillator. 

INTRODUCTION 

In recent papers,1-3 we have shown that it is possible 
to treat the problem of the Brownian particle, formally 
at least, by means of a Schrodinger-like equation for 
the probability amplitude. We have demonstrated 
that in this description the mean value of the mo­
mentum of the particle is proportional to (-i grad) 
and, due to the stochastic nature of the problem, the 
"uncertainty relations" appear between momentum 
and position coordinates. In this treatment the 
"diffusion equation" is used; i.e:, we restrict ourselves 
to time intervals very large compared with the 
relaxation time t» {J-l, where {J is the friction 
coefficient. 

The results obtained strongly suggest an approach 
to the problem in the opposite direction, namely, to 
try to establish the connection between the motion 
of a quantum-mechanical particle and that of a 
corresponding classical particle, subjected to an 
additional stochastic force. Since this must hold also 
for the "free particle," we must postulate that the 
stochastic force has its origin in the vacuum with 
which the particle interacts continuously. Then the 
friction coefficient {J of the Brownian problem 
corresponds, in the case of the quantum mechanical 
particle, to a new parameter which measures the mean 
frequency of the interaction with the vacuum (which 
in turn corresponds to the thermal bath of the classical 
particle). 

Strictly speaking, this idea is not new. In fact, 
several authors4 have contemplated it in different 
forms for a long time. Our approach, however, 

differs from others' in some aspects, several of which 
are discussed in the text. 

I. PROPOSED INTERPRETATION 

The starting point of this paper will be Schrodinger's 
equation 

(1) 

As a first step in our procedure, we show that 
Eq. (1) may be transformed into a Smoluchowski 
equation with a probability density p which is equal 
to the norm of the complex probability amplitude "P. 
To achieve this we shall write "P in the usual textbook 
form, 

(2) 

where Rand S are real, dimensionless functions of the 
coordinates and the time. From Eqs. (1) and (2) 
we obtain immediately the system of equations: 

R = -ilXV'2S - IX grad R . grad S, (3) 

-.5 = -ilXV'2R - llX[(grad R)2 

- (grad S)2] + Viii, (4) 

where we have set IX = Ii/m. 
It is well known that Eq. (3) may be written in the 

form of a continuity equation.5 Indeed, introducing 
in Eq. (3) the integrating factor e2R and writing the 
resulting expression in the form: 

ae2Rlat = -IX div [e2R grad S], 

we have that 

* Technical consultant, Comisi6n Nacional de Energla Nuclear aplat + div [lXp grad S] = 0, (5) 
(Mexico). 

1 L. de la Pella-Auerbach, Phys. Letters 24A, 603 (1967). where 
2 L. de la Pella-Auerbach, E. Braun, and L. S. Garcia-Colin, R 2 (6) 

J. Math. Phys. 9, 668 (1968). P = e2 
= I "PI • 

• Hereafter, we shall refer to these papers as I and II, respectively. 
'See references in Papers I and II. 5 D. Bohm, Phys. Rev. 85, 166 (1952). 
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Equation (5) is the continuity equation of quantum 
mechanics, which is the basis for the interpretation of 
p as the probability density, and "p the wavefunction 
as the probability amplitude. The remaining equation 
may be rewritten as follows: 

a(IiS) + (grad IiS)2 + V _ ~ [V'2R + (gradR)2] = 0, 
at 2m 2m 

which is interpreted by Bohm5 as the Hamilton-Jacobi 
equation for the action liS for a particle acted on 
simultaneously by the classical potential V and the 
"quantum-mechanical potential" ~B = - (1i2/2m) X 

[V'2R + (grad R)2]. This interpretation does not seem 
very convincing to us, but we shall postpone its dis­
cussion to a later stage of this paper. 

For the time being we shall make use of Eq. (5) 
only and demonstrate that it is possible to write it in a 
form which corresponds to the Smoluchowski 
equation of a classical particle subjected to a stochastic 
force. This is easily achieved by introducing the new 
function Q defined by 

Q = R + S. 

In terms of Q and R, Eq. (3) takes the form 

R = _!~[V'2Q - V'2R] 

(7) 

- ~ grad R . (grad Q - grad R), 

which, with the aid of Eq. (6), may be written as 

aplat + div [(oc grad Q)p - !oc grad p] = 0. (8) 

This equation has the sought-after form, namely that 
of a Smoluchowski equation of a Brownian particle 
acted on by an external force K per unit mass6 given by 

K = oc{l grad Q (9) 

and with a diffusion coefficient D given by 

D = ~/2 = Ii/2m. (10) 

If we agree to give this physical interpretation to 
Eq. (8), then {l is a parameter, which in view of the 
discussion set forth in the introduction is a measure 
of the interaction between the particle and the 
vacuum. Thus, {l will have a meaning analogous to 
that of the corresponding parameter in the theory of 
the random flight. 6

,7 Strictly speaking, we are therefore 
studying not a Brownian particle, but a "random­
flight" particle subjected to an external force. It is 

• S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). 
7 Ming Chan Wans and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 

323 (1945). 

evident that this interpretation is not in contraposition 
with quantum mechanics, at least from the point of 
view of the final results. 

The postulation of Eq. (8) as the fundamental one, 
which implies that we are considering a description 
of the motion of a classical Brownian particle valid 
for time intervals such that b.t» {3-1, allows us to 
understand many facts of quantum mechanics with 
classical concepts and in a very direct way. In the first 
place, due to the stochastic nature of the problem, 
there is a mean-square deviation of the position and 
velocity coordinates, which gives rise to the mo­
mentum-position uncertainty relations. Secondly, 
there is no such thing as the trajectory of the particle 
between two given points, but every particle follows 
its own trajectory, giving rise, in the mean, to a current 
density which lends itself only to a statistical descrip­
tion. 

This result is somewhat connected with the physical 
interpretation of Eq. (4) as a Hamilton-Jacobi 
equation for the action liS, as was pointed out earlier. 
In fact, recall that the existence of such an equation 
implies that the particle obeys a least-action principle, 
by means of which one can define, at least in principle, 
the trajectory for the particle. But we have seen that 
the quantum-mechanical particle has a manifold of 
possible paths between the two given points and not 
only one, which in turn implies that such an inter­
pretation is not legitimate. Furthermore, from Eq. 
(5) we conclude that pm-1 grad (liS) represents the 
current density of the particle, where m-1 grad (liS) 
stands for the flow velocity of the particle, but not 
for its instantaneous velocity. 

It is important to notice that Eq. (1) is considered 
to be valid for all time intervals. On the other hand, 
Eq. (8), which is a direct consequence of Eq. (I), is 
valid, according to our interpretation, for time 
intervals such that {lb.t » I. This contradiction leads 
us to one of the two following possibilities: 

(a) It is not possible to interpret Eq. (8) as a Smolu­
chowski equation due to the additional restrictions not 
contained in SchrOdinger's equation. 
(b) It is possible to interpret Eq. (8) as a Smolu­
chowski equation provided that we assume that the 
restriction {lb.t» 1 applies also to Schrodinger's 
equation. 

In this paper we accept the second possibility as the 
correct one and thus interpret the condition {3M » 1 as 
an oversimplified form of the time-energy uncertainty 
relation. In fact, due to the stochastic nature of the 
problem, the energy of an isolated particle is a fluc­
tuating quantity and we can roughly estimate its 
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fluctuation with the aid of Eq. (9) as !J..E"" rx(Jm!J..Q. 
Eliminating the unknown parameter (J with the aid of 
the condition (J!J..t» 1, we have I!J..EI!J..t ~ Ii!J..Q "" 
Ii. In our description, this classical relation has a 
very clear meaning: As the time interval used to 
measure the mean value of the energy of the particles 
grows, the dispersion in the measured value is reduced, 
because more and more fluctuations are taken into 
account. 

The force K acting on the equivalent classical par­
ticle contains the information about the boundary 
conditions of the problem through Q according to 
Eq. (9) and thus depends on the whole system. This 
feature allows us to understand the origin of some 
typical quantum effects. Indeed, suppose that the 
configuration of the system is modified by changing 
the geometry of the boundaries, e.g., the opening or 
closing of a slit. Clearly, the system will readjust 
itself to the new conditions through the change of the 
probability amplitude from its old value to a new one. 
The transient is not described by Schrodinger's 
equation, but after it has died out the resulting Q will 
differ, in general, from the original one. Hence, the 
force K will also be different and thus the motion of 
the particle affected without having exerted a direct 
action on the particle itself. 

This qualitative discussion has some very interesting 
consequences. We are postulating that the funda­
mental equation of quantum mechanics, namely, 
Schrodinger's equation, is not generally valid, but is 
restricted to time intervals such that (J!J..t» 1. This 
in turn means that, at least in principle, it is possible 
to construct a more general machinery for the 
description of a quantum-mechanical problem. To 
achieve this, we need only use as our starting point the 
Fokker-Planck equation, in order to eliminate the 
above restriction. This treatment of the problem 
gives us a more precise description of the motion of 
the particle, valid for all time intervals. Some initial 
results along these lines will be published elsewhere. 

II. SOME BASIC RELATIONS 

The aim of this section is a two-fold one. Firstly, 
we want to show that in our interpretation, we can 
measure the average value of the momentum of a 
particle by the expectation value of the operator 
-iii grad, and secondly, to give a physical meaning 
to Eq. (4). For these purposes, let us define the 
velocity operator v: 

v = (Ii/m) grad Q - (Ii/2m) grad (11) 

so that the density current is given, according to (8), 

by 
j = vp = Vp, (12) 

v being an eigenvalue of the operator v. 
Introduce also the Hermitian operator j) defined as 

j) = -imrx grad = -iii grad. (13) 

~s sh~wn in Paper II, the mean value of this operator 
(p )av IS zero and also, because of its Hermiticity, both 
the mean and expectation values8 of grad R are also 
equal to zero. These two results immediately imply 
that 

(j» = Ii(grad S)av, (14) 

and furthermore, using Eq. (7), that 

(mv)av = Ii(grad Q)av = Ii(grad S)av' (15) 

Comparison of Eqs. (14) and (15) yield, finally, that 

(j» = (mv)av' (16) 

Equation (16) is therefore the proof of our first 
assertion, namely that in our picture, we can identify 
the operator j) = - iii grad as the momentum oper­
ator, in the sense that its eigenvalues are equal to the 
mean value of the momentum of the representative 
particle. This result also guarantees the validity of 
the usual (v, p) uncertainty relations, through the 
commutator [x, j).,] = iii. 

In an entirely analogous way, we can introduce the 
Hermitian operator 

E = ili(%t), (17) 
and show that 

(E) = -1i(8)av = -1i(8), (18) 

making use of the result that (R) = CR)av = 0, 
already obtained in Paper II. 

Now let us rewrite Eq. (4) and take its expectation 
value to obtain 

-1i(8) = (/i2/2m)«grad S)2 - (grad R)2 

- '\j2R) + (V). (19) 

We can write Eq. (19) in several different, but clearly 
equivalent, forms. In the first place, using the relation 

(j)2) = _1i2('\j2R + (grad R)2 - (grad S)2), 

together with Eqs. (17) and (18), we have that 

<iii :) = (£) = <:~ + V) = (H), (20) 

where fi == j)2/2m + V is the Hamiltonian operator. 
This is an almost trivial result, but it allows us to 

8 Recall that if / is an operator, (/> == f tp*/tp dv and <hav == 
f/p dr. 
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interpret E as the energy operator in the usual quan­
tum-mechanical sense. In the second place, we have 
from Eqs. (11) and (12) that the flow momentum is 
given by 

mv = Ii grad Q - lli(grad pip) = Ii grad S. (21) 

In view of this relation, we can transform Eq. (19) 
into the form 

(E) = (imv2 + V + rpB), (22) 

where rpB = -(li2/2m)[(grad R)2 + \72R] is Bohm's 
potential. 5 

We thus see that Eq. (4) leads to two alternative 
interpretations for the expectation value of the 
energy operator E. On the one hand, Eq. (20) has the 
usual meaning, namely that the expectation value 
of the energy operator is given by the sum of two terms, 
the total kinetic energy of the particle (p2/2m) plus 
the expectation value of the external potential V. 
On the other hand, Eq. (22) may be interpreted as the 
sum of two terms, the average kinetic energy of flow 
(lmv2) plus an effective potential V + rpn. This, 
however, is not the case. Indeed the so-called Bohm's 
potential rpB has as its expectation value the following 
one, namely 

(rpB) = (l/2m)(p2 - (mv)2), 

thus showing that the two interpretations are mathe­
matically identical, and moreover, that this quantity 
(rpB) has the true physical meaning of the difference 
between the expectation values of the total kinetic 
energy and the kinetic energy of flow, i.e., it is the 
mean stochastic kinetic energy. 

We can write Eq. (4) in still another form, explicitly 
using our interpretation of the motion of the particle 
in terms of the Smoluchowski equation. This immedi­
ately implies that we are working in the static 
approximation,9 in which the term m(d2r/dt 2) is 
considered negligible compared to the "viscosity" 
term m~(dr/dt). This implies the possibility of 
referring to "applied velocities" j3-1K instead of 
"applied forces" K. Consequently, in this approxima­
tion we must calculate the energy associated to the 
force K by im(f3-1K)2 instead of - S K • dr. Taking 
into account Eq. (9), the "impressed velocity" is 
thus equal to: 

U = {3-1K = ex grad Q = ex grad R + v, 

where we have used Eq. (21). Notice that (u)av = 
(v)av' From this equation it follows that 

so that Bohm's "potential" may be rewritten as fol­
lows: 

rpB = - - - (v - U)2 - - div (v - u) li
2 

[m2 m J 
2m li2 Ii 

= -lm(v - U)2 + ~ div (v - u). 
2 

With this result, we can write for the total energy, 
according to Eq. (19), 

E = lmv2 - !m(v - U)2 + (1i/2)div(v - u) + V, (24) 

which is the sought for alternative form for the energy. 
With the aid of Eq. (24) we can establish a formal 

analogy between the quantum-mechanical equations 
and those of fluid dynamics. Indeed, if we take the 
gradient of Eq. (24) and notice that 

grad E = -li(%t) grad S = -mov/ot, 

we obtain the following result: 

ov + v • grad v + grad [~diV (v - u) - Hv - U)2J at 2 

= -grad V. (25) 

Equation (25) is of the form of Euler's equation 
for an ideal fluid, on which an external potential V is 
acting and supporting a hydrostatic pressure. This 
formal analogy has been used by some authors in a 
more or less explicit form,lo.11 with the purpose of 
giving a different interpretation of quantum me­
chanics. We must remark, however, that from our 
point of view, this analogy is purely formal and does 
not have any deep physical meaning. It comes out as a 
direct consequence of the fact that our two basic 
equations [e.g., (8) and (25)] are exactly of the same 
nature as the basic equations of hydrodynamics, 
namely the continuity equation and the energy 
conservation equation. 

III. HARMONIC OSCILLATOR 

It is clear from the above considerations that our 
model not only does not contradict usual quantum 
mechanics, but allows us to understand it in a different 
and very simple way. Nevertheless, in order to get a 
better understanding of the proposed interpretation, 
we consider it instructive to give a simple example, 
namely that of a one-dimensional harmonic oscillator. 

Let 1fn be the wavefunction corresponding to a 
stationary state of the oscillator with energy En. 
Then 

.-IE 1,_ 
1fn = Cnei

" t-2. Hn(~) = eR +iS, (26) 

grad R = - (m/Ii)(v - u), (23) where ~ = x/xo and x~ = (mw)-lli. 

• J. P. Terletskiy, Statistical Physics (Izd. Vis. Shk., Moscow, 1966) 
(in Russian). 

10 E. Made\ung, Z. Physik 40,332 (1926). 
11 D. Bohm and J. P. Vigier, Phys. Rev. 96,208 (1954). 
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According to Eqs. (9) and (21), we get that 

v = m-lli grad S = 0, 
and 

(27) 

p-1K = u = m-11i grad Q = _ .!!:....(~ _ H~), (28) 
mxo Hn 

where H~ = dHTJd~. Therefore, the flow velocity is 
equal to zero in this case. Also, according to Eq. (28) 
the velocity u produced by the external force K contains 
two terms. The first one corresponds in this case to 
the velocity arising from the elastic force, whereas the 
second one may be considered as a macroscopic meas­
ure of the interaction between the particle and the 
vacuum. It is interesting to note that it is precisely this 
term which is responsible for the quantization of the 
system, because it may acquire only a well-defined 
discrete structure, when excited by an external elastic 
force. Which one of the infinitely many possible 
responses will be developed depends on the available 
energy En = liw(n + i). 

We can visualize the problem from another slightly 
differ-ent point of view. Suppose we consider a particle 
which goes from a certain point (say Xo at I = 0) to 
another point (say x at I > 0). The transition ampli­
tude (for I > 0) is given by Feynman's kernel for the 
harmonic oscillatorl2 

I ( 
C)1 imw K(xo x, t) = -.- exp . 

sm wt 21i sm wt 

X [(x2 + x~) cos wt - 2xox], (29) 

where C is some constant. Notice that this kernel is 
such that grad R = ° and Eq. (4) simply reduces to 

as 1i2 

-Ii - = - (grad S)2 + V. (30) at 2m 

Upon substitution of grad S calculated from Eq. 
(29), and introduction of the corresponding potential 
V, Eq. (30) gives the identity 

-Ii as = mw
2 

x
2 + x~ - 2xox cos wt (31) 

at 2 sin2 wt 

Let us assume that the variable x may be written as 
the sum of a systematic part which we shall denote by 
{x}, and a stochastic part x - {x}. Then we can write 
for the purely systematic part of Eq. (31): 

-Ii a{S} = !!..- {grad S}2 + V({x}) 
at 2m 

= mw2 {x}! + x~ - 2xo{X} cos wt 

2 sin2 wt 
(32) 

12 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path 
Integrals (McGraw-Hili Book Company, New York, 1965). 

Since Eq. (32) is the Hamilton-Jacobi equation for the 
systematic part of the motion, we may write 

{E} = -1i(o{S}/al). (33) 

For {E} to be a constant of the motion, it is necessary 
that 

{x} = (vo/w) sin wI + Xo cos wI, (34) 

in view of Eqs. (32) and (33), where Vo is an arbitrary 
constant. Defining {v} == Ii{grad S}, one immediately 
obtains 

{v} = d{x}/dl = Vo cos wI - wXo sin wI. (35) 

We see that the systematic parts of the variables 
satisfy the classical laws for the harmonic oscillator. 
If further we assume that the energy {E} = tm{v}2 + 
!mw2{x}2 of a representative particle coincides with 
En = liw(n + i), we obtain v~ = 2nw2x~; i.e., the 
amplitude and energy of the oscillation in each state n 
are related one to each other through the classical 
equation 

{ }
2 2 v~ 2 2En 

x max = Xo + 2 = xo(l + 2n) = --2 . 
W mw 

Returning to Eq. (28), we see that the knowledge 
of u allows us to obtain some information about the 
distribution p. In particular, p will have maxima at 
the points for which u = 0, that is, for the solutions of 
~Hn - H~ = ° (this is easily verified differentiating 
p ,....., e-S2H~); furthermore, for Hn = 0, we see from 
Eq. (28) that u becomes infinite, meaning that the 
probability of finding the particle at such points is 
equal to zero. Hence we see that one can describe the 
behavior of the particle either by specifying the 
values of p or alternatively by giving the values of 
the force through the velocity u. 

IV. CONCLUSIONS 

We have shown in this paper that by means of a 
simple and well-known transformation, Schrodinger's 
equation may be decomposed into a set of two equiv­
alent equations. One of them corresponds to a 
continuity equation which may be interpreted in 
terms of a stochastic process described by Smolu­
chowski's equation. This process corresponds to that 
of a random-flight particle upon which an external force 
K is acting. Also, due to the limitations of this 
equation, the description of the motion is valid for 
time intervals long compared with its relaxation time. 
This relaxation time is, for a process of the type here 
contemplated, equal to the inverse of a certain param­
eter p which in a true Brownian motion is propor­
tional to the viscosity of the medium. In the case of a 
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quantum particle, however, {J must be interpreted as 
a new parameter which measures its interaction with 
the surroundings, namely, the vacuum. Also, it is 
shown that the diffusion coefficient appearing in 
Smoluchowski's equation is precisely equal to Ii/2m. 

The second equation of the set mentioned before 
cannot be interpreted as the Hamilton-Jacobi 
equation for the quantum particle, although, as is 
well known, reduces to it in the classical limit (Ii ---+ 0). 
The reason for this stems from the stochastic nature 
that we are assigning to Schrodinger's equation 
which allows us to speak only of a current density for 
the particle and not of its instantaneous velocity at a 
given point in space. This means that the particle 
will have a manifold of possible paths between two 
given points, a result which is consistent with quantum 
mechanics. 

It is convenient to emphasize that all our scheme of 
thoughts is valid only if we assume that the restriction 
imposed on the time intervals, for which the above 
description holds true, also holds for SchrOdinger's 
equation. 

On the basis of our previous ideas, we then proceed 
to show that the usual operators of quantum me­
chanics, namely the momentum and energy operators, 
acquire a physical significance which is inherent in the 
stochastic nature of the motion. Thus the usual 
expectation value of the operator -iii grad is indeed 
equal to the mean value of the momentum associated 
with the particle and that the expectation value of the 
total energy operator ili(a/at) is the sum of the 
expectation values of the kinetic and external potential 

energies. Hence, the commutation relations hold true 
and through them we obtain, as a consequence of our 
procedure, the usual uncertainty relations. 

Concerning the expectation value of the total energy 
operator, an important result is that the interpretation 
advanced by Bohm whereby the expectation value of 
this operator involves a term containing a "quantum­
mechanical potential," is obtained, and furthermore, 
it is shown to be mathematically identical to the con­
ventional one. Moreover, the expectation value of 
this "quantum potential" is seen to have the physical 
meaning of an average stochastic kinetic energy. 
Finally, it is possible to establish the formal analogy 
between the quantum-mechanical equations and those 
of hydrodynamics. 

When our results are applied to a one-dimensional 
harmonic oscillator, we obtain explicit forms for the 
relevant quantities. It is then clear what the meaning 
of K is, at least for this case. Indeed, the external 
force contains, in addition to the usual elastic force, 
a term which is a direct measure of the interaction 
between the particle and the vacuum. This term is the 
one responsible for the quantization of the system. 
Finally it is shown, with the aid of Feynman's 
kernel for the oscillator, that the systematic or non­
stochastic part of the dynamical variables satisfies the 
laws of classical mechanics. 
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A possi.ble general~zation ?f quantum mech~nics is examined by showing that the motion in phase space 
of a classIcal Brow.man partIcle m~y be descnbed by a complex probability amplitude depending on the 
phase-space coordInates and the t~me, and obeying a SchrOdinger-like equation. However formal this 
result may seem, the usual dyn~mlcal operators may be d~fine~ whose ph.ysical meaning stems directly 
from the .theory. An outstandIng fea!ure ?f .t~e formalIsm IS that ordInary quantum mechanics in 
configuratIOn spa~e m~y ~e re.cove~ed ~n ~ lImItIng process whereby the velocity variable, defined now 
through a statIstIcal dls.tnbutlOn, !S elImInated. Therefore, it plays the role of a hidden variable. This 
~esult supports rece~t reInterpretatIons of von Neumann's theorem on the nonexistence of such variables 
In quantum mechanICS and serves as a counterexample of the usual interpretation of his theorem. 

I. INTRODUCTION 

In previous papers,l the first three of a series in 
which we have engaged ourselves to study a possible 
relationship between nonrelativistic quantum me­
chanics and the theory of stochastic processes, we have 
discussed the SchrOdinger and Smoluchowski equa­
tions, one from the standpoint of the other. If the 
latter one is used to describe the motion of a Brownian 
particle, then, as was shown in Paper II, such a motion 
can be understood via a SchrOdinger-like equation 
defining a certain complex probability amplitude in 
configuration space. Also, to the ordinary quantum­
dynamical operators, a physical meaning was given 
which stems from the stochastic nature of the process. 
The results so obtained suggested the upposite ap­
proach to the problem, namely, to describe the motion 
of a quantum-mechanical particle through that of a 
classical particle moving under the action of a stochas­
tic force. This problem was dealt with in Paper III, 
where Smoluchowski's equation was derived from 
SchrOdinger's equation and again, the usual quantum­
mechanical operators could be interpreted physically 
using only the stochastic nature of the classical motion. 
In both cases the usual commutation relations were 
obtained, and through them, the uncertainty principle 
was shown to be valid. However, the two descriptions 
suffer from a severe limitation; namely, that in the 
Smoluchowski approximation, we know that the 

• Technical Consultant. Comisi6n Nacional de Energia Nuclear 
(Mexico). 

1 L. de la Pena-Auerbach, Phys. Letters 24 A603 (1967); L. 
de la Pena-Auerbach, E. Braun, and L. S. Garcia-Colin, J. Math. 
Phys. 9, 668 (1968); L. de la Pena-Auerbach, and L. S. Garcia­
Colin, J. Math. Phys. 9, 916 (1968). These papers will be hereafter 
referred to as I, II, and III, respectively. See also L. de la Pena­
Auerbach and L. S. Garcia-Colin, Rev. Mexicana Fis. 16, 221 
(1967). 

motion is correctly described only for time intervals 
which are long compared with the relaxation time of 
the particle. Recall that this relaxation time is 
essentially inversely proportional to a certain param­
eter f3 which in the case of a classical Brownian 
particle is a measure of the viscosity of the medium 
but for a quantum particle it is interpreted as a 
measure of its interaction with the vacuum. 

As was advanced in Paper III, the obvious way to 
reVlove this limitation is to consider the quantum 
particle as described by a motion of a classical 
Brownian particle in phase space, i.e., by Fokker­
Planck's equation.2 However, the step of going into 
phase space has a stronger motivation which may be 
stated as follows: We want to obtain a more precise 
description of the dynamics of an ordinary quantum­
mechanical particle by a generalized Schrodinger 
equation which gives the time rate of change of a 
complex probability amplitude in the phase space of 
the particle. This equation is derived from a Fokker­
Planck equation using a method which is analogous 
to that used in II. Also, this description is valid for 
all times of the particle's motion. Next, we want to 
recover the ordinary quantum mechanics in configura­
tion space by taking an asymptotic limit corresponding 
to times long compared to the particle's relaxation 
time. This is achieved by eliminating one of the 
variables appearing in the exact description and to 
which a statistical distribution may be attached. This 
variable, the stochastic velocity u in our case, thus 
plays the role of a "hidden variable." The result so 
obtained is in agreement with the recent interpretation 

2 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). Reprinted in 
Noise and Stochastic Processes, N. Wax, Ed. (Dover Publications, 
Inc., New York, 1954). 

922 
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that several authors,a especially Feyerabend,4 have 
given to von Neumann's theorem.5 In fact, the claim 
is that hidden variables introduced in order to 
provide a more precise description of a statistical 
process are given by a nonfree dispersion distribution, 
which is precisely our result. 

The idea of using the phase space of a mechanical 
system to discuss ordinary quantum mechanics has 
also been explored recently by Della Riccia and 
Wiener.6 These authors indeed derive Schrodinger's 
equation from an extended form of Liouville's 
theorem, thus exhibiting the existence of hidden 
variables, and furthermore showing that such a 
description does not violate the uncertainty relations, 
although they cannot establish them. This is the 
major difference between their approach and ours. We 
are considering the transition to phase space to obtain 
a generalized SchrOdinger's equation from which 
we shall recover, in the asymptotic sense described 
above, ordinary quantum mechanics together with 
the commutation rules for the operators and hence the 
uncertainty relationships. It is not our intention to go 
very deep into a discussion of the two methods, 
although some remarks are given in Sec. IV. How­
ever, let it be stated that the procedure here presented 
to generalize quantum mechanics is just a particular 
case of a more general one in which context the 
comparison between the two formalisms shows up in 
its full splendor, but we leave the details for a forth­
coming paper. (See last reference in Ref. 1). 

In Sec. II of this paper we show how a generalized 
Schrodinger equation may be obtained from Fokker­
Planck's equation using methods similar to those 
already outlined in Papers I and II. Section III is 
devoted to a short discussion of a proposed physical 
interpretation of the results derived in the previous 
section, and finally, in Sec. IV we consider the special 
case in which the configuration and velocity spaces are 
independent. In this case it i'l iihown that the extended 
theory reduces to the conventional one where the 
particle is described by SchrOdinger's equation. This 
reduction implies, among other things, a normal 
distribution of velocities. As should be expected, this 
reduction is obtained for times which are long 
compared with the relaxation time of the particle. 
The concluding remarks in connection with the 

3 S. John Bell, Rev. Mod. Phys. 38, 447 (1966); D. Bohm and J. 
Bub, ibid. 38, 453 (1966); and references in these papers. 

• P. K. Feyerabend, Z. Physik 145, 421 (1956). 
5 J. von ~eumann, Mathematical Foundations of Quantum Me­

chanics (Pnnceton University Press, Princeton, N.J., 1955); see also 
Ref. 3. 

6 G. Della Riccia and N. Wiener, J. Math. Phys. 7 1372 
(1966). ' 

physical nature implied by this limit are given at the 
end of the section. 

II. GENERALIZED SCHRODINGER'S 
EQUATION 

The starting point of our derivation is the Fokker­
Planck equation describing the motion in phase space 
of a Brownian particle under the influence of a non­
velocity-dependent external force. Thus2 

Dw/ Dt = divu • (fJuw + q gradu w), (1) 

where w(r, u, t) stands for the probability density 
obeying a Markoff process. Indeed, Eq. (I) is valid 
for any process to which a Markoffian probability 
density in phase space may be assigned. In this 
equation, D/ Dt stands for the substantial hydro­
dynamic, or macroscopic time derivative7 

D/Dt = %t + U· gradr + K· gradu, (2) 

where K is the external force per unit mass. Further­
more, fJ and q, which we shall assume to be constants, 
are a measure of the coupling between the system 
with its surroundings, and of the diffusivity of the 
system, respectively. Thus, they are in general 
parameters which characterize the physical condition 
of the system and its surroundings. Finally, gradu 
and gradr imply that the operator grad acts on the 
velocity and space coordinates, respectively. 

Since w is a real positive function, we can rewrite 
it as follows: 

w = exp 2:R, (3) 

where :R is clearly a real function of r, U, and t. 
Furthermore let us define a vector F such that 

F = -fJu - qw-1 gradu w. (4) 

Substitution of Eqs. (3) and (4) back into Eq. (2) 
yields the result 

D:RjDt = -i divu F - F· gradu:R. (5) 

Notice should be made of the fact that the vector F 
defined by Eq. (4) has the meaning of a mean force 
per unit mass which is developed on the particle as it 
moves through its surroundings. Furthermore, F is 
velocity-dependent and we shall :lssume that it may 
be derived from a velocity-dependent potential S 
which may be thought of as a generalized macro­
scopic dissipative function. Thus, 

F = 2q gradu S, (6) 

where the proportionality constant has been chosen 
equal to 2q only for the sake of convenience. Of 

, We shall refer to it simply as Stokes' operator. 
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course, q has the required dimensions, so that F is a We also define its expectation value (g) by 
force per unit mass, S bdng dimensionless. By 
substituting Eq. (6) into Eq. (5) we find that (g) = f 'Y* g'Y dr duo (14) 

D5t/Dt = -qV!S - 2q grad. 5t. grad. S. (7) 

If we now define a probability amplitude 'Y, where 

'Y == exp (5t + is), 

which is such that 

(8) 

w = 'Y*'Y, (9) 

we find, using Eq. (8) to express the left-hand side 
and the first term in the right-hand side of Eq. (7) 
in terms of'Y, the, expression 

where 

n = -DS/Dt + q[V!5t + (grad. :JW - (grad. 8)2]. 

(11) 

Equation (10) is the desired extended form of 
SchrMinger's equation defining the probability ampli­
tude'Y in phase space, with the function n given in 
Eq. (I I) playing the role of the potential energy. No­
tice that the analogy is purely formal because the left­
hand side contains the Stokes' operator acting on 'Y, 
instead of just a/at, and, in the right-hand side, the 
Laplacian acts on the velocity coordinates plus the 
fact that n is a space-velocity-dependent function. 

It is important to notice at this stage the consistency 
in the procedure here followed: If we use Eq. (8) 
to eliminate 5t and 8 from Eq. (7), we get the con­
servation equation for the "probability current" in 
phase space, namely 

D'Y*'Y/ Dt = iq['t"*V!'Y - (V:'Y*)'YJ. (12) 

This result thus supports the interpretation ofEq. (10) 
as a generalized Schrodinger equation in phase space. 

III. PROPOSED PHYSICAL INTERPRETATION 

The main objective of this section is to propose a 
physical interpretation to the formal results derived 
in Sec. II for the extended form of Schrodinger's 
equation. To achieve this we shall introduce an 
adequate language very much along the same lines 
of those used, for similar purposes, in Paper II. 
Since w is a probability distribution, we define the 
mean value (g)av of an operator g by 

(g)av = f gw(r, u, t) dr du, (13) 

the integration being over the whole phase space. 

Clearly, if g is a c function, (i)av = (g). 
Using Eqs. (4) and (6) we immediately find that 

(F)av = -(3(u)av = 2q(grad. S)av, (I 5) 

provided, as it is usually the case, that w vanishes 
when u ~ 00. Also, since -i grad. is an Hermitian 
operator, the computation of its expectation value 
leads to the relations 

(grad. 5t )av = 0 (I6a) 
and 

(-i grad.) = (grad. 8)av = -«(3/2q)(u)av, (16b) 

where use has been made of Eq. (I 5). This equation 
shows that the mean value of the dissipative force is 
proportional to the mean velocity of the particle with 
a proportionality constant equal to - (3. This con­
stant, in the case of a Brownian particle, depends on the 
characteristics of the particle (mass and geometry) 
and those of the medium (viscosity).2 In the case of a 
quantum particle, it is, however, an undetermined 
parameter. 

Let us now define an operator ~ ass: 

~ = mfi = i(2mq/(3) grad.. (17) 

Taking the expectation value of p and using Eq. (16b), 
we are easily lead to the following result, namely 

(~) = m(u)av' (18) 

or in words, the expectation value of ~ is equal to the 
average momentum of the particle. Thus, we may 
interpret this operator as its "momentum operator." 

Now consider the mean deviation of the operator ~ 
defined, as usual, by 

liV = " - <V) = " - mii, (19) 

where ii = (u)av' Then, one gets that 

«li~)2) = (~2) _ m2ii2, 

and therefore, 

(v 2/2m) = -(2mq2/(32)(grad!) 

(20) 

= tm(u):v + (2m)-1«li~)2). (21) 

This result allows us to interpret the left-hand side as 
the expectation value of the total kinetic-energy 
operator of the particle. Indeed, this total kinetic 
energy is equal to the mean kinetic energy due to the 
flow of the particle plus a term associated with the 

8 As will be shown later, q = np'/2m so that Eq. (17) reduces to 
inp grad •. 
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kinetic energy arising from the fluctuations of its 
momentum. 

Alternatively, we may express Eq. (21) in a different 
way. Consider the expectation value of the operator 
~2. Then, if this is calculated directly using Eqs. (8) 
and (10) we get that 

(DjtIDt)av = (V';8 + 2 gradu jt. gradu 8)av = 0, 

(22a) 

where use has been made of Eq. (7) and the Hermitian 
nature of the operator. Furthermore, 

(V';) = (V';jt + (gradu jt)2 - (gradu 8)2). (22b) 

Thus, using Eqs. (17) and (22b), we get that 

(,,212m) = -(2mq2/f32) 

x (V';jt + (gradu jt)2 - (gradu 8l) (23) 
or 

(~2/2m) = -(2mqlf32)(D8IDt + n), (24) 

using Eq. (11). 
On the other hand, evaluation of (i DI DI), together 

with Eq. (10), yields 

(i DIDI) = (f32/2mq)(~2/2m) + (n), (25) 

where Eqs. (22b) and (23) have been used. Combining 
this result with Eq. (24) we get that 

(i DIDI) = -(D8IDt). (26) 

Equation (25) establishes the energy-conservation 
theorem in terms of the expectation values of the 
total energy operator i DIDt, the total kinetic energy 
operator, ;and n, which is seen to play the role of the 
potential energy. 

It is also worthwhile to point out that in this context, 
the contribution to the fluctuations of the total kinetic 
energy arise not only from the fluctuations in velocity 
space but also from a term containing cross effects 
of the velocity and configuration spaces. This may be 
seen if we calculate the expectation value of V'~ by 
first performing an integration by parts. We get that 

(V';) = - f gradu 'Y* . gradu'Y dr du 

= - [«gradu jt)2)av + «gradu 8)2)avJ, 

so when combined with Eq. (22b), yields the relation 

(V';jt)av + 2«gradu jt)!)av = O. 

Substitution of this equation into Eq. (22b) and 
noticing that from Eqs. (3), (4), and (6), 

gradu(jt + S) = - (2q)-lf3u, 

we get, after some straightforward manipulations, 

that 

(,,212m) = tm(u2)av 

- (4mqlf32) (gradu jt. gradu 8)av, (23a) 

or, by substracting tm(u)!v from both sides, the 
equivalent expression 

«2m)-I(~~)2) = tm«~u)2)av 

- (4mq/f32)(gradu jt. gradu 8)av, 

where the second term in the right-hand side is a 
measure of such cross effects, since the u gradients of 
jt and 8 will, in general, be function ofr and u. 

Notice should be made of the fact that all the results 
here derived are equally well suited for the treatment 
of a true Brownian particle of mass m moving in a 
heat bath whose temperature is T and viscosity 'Y). 

In this case, the force per unit mass K is known and 
so are the parameters 13 and q as functions of m, 'Y}, T, 
and the size of the particle. However, in our extended 
version of Schrodinger's equation these parameters 
are so far unknown and at most we can hope that when 
we set the conditions from which we may recover 
ordinary quantum mechanics, Eq. (25) will go to its 
usual form, and this will imply that (2mq)-lf32 __ Ii-I, 
Ii being Planck's constant divided by 27T. Indeed, we 
show in Sec. IV that this is the case. However, in the 
present stage of our theory we cannot fix 13. Either it is 
determined from experiment or else additional 
information must be fed into the theory. 

IV. TRANSITION TO ORDINARY QUANTUM 
MECHANICS 

The purpose of this section is to study a very simple 
case of the extended theory advanced in the previous 
section in order to obtain, firstly, a better under­
standing of its own intrinsic structure and, secondly, 
to provide an example in which ordinary quantum 
mechanics is recovered, via a limiting process whereby 
the variable u is eliminated. In the extended theory, 
this variable is defined by a statistical distribution 
which will turn out to be a normal distribution. 
Thus, the velocity of the particle appears to play the 
role of a "hidden variable." This means that, within 
the framework of our theory, a hidden variable 
which is used to give a more precise description of the 
quantum-mechanical motion of a single particle, a 
process which is per se of statistical nature, is defined 
through a nonfree dispersion distribution. Thus, the 
recent interpretation4 of von Neumann's theorem on 
hidden variables5 is confirmed. 

The starting point of our model is an assumption 
whereby the variable u is considered to be separated 
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from the configuration variable r and the time t. 
Suppose then that it is possible to write that 

w(r, u, t) = g(u)p(r, t), (27) 

and, furthermore, that the external force K does not 
depend on time. Substitution of Eq. (27) back into 
Eq. (1) yields: 

ap/at + u • gradr p + pK. g-l gradu g 

= npp + ppu· g-l gradu g + (pq/g)V!g, (28) 

where n = divu u is the number of dimensions of the 
velocity space. Notice that Eq. (28) is satisfied only 
if the hybrid term u. p-l gradr p + K . g-l gradu g 
vanishes identically, for then we get a set of differential 
equations: one in u, and another one in rand t consist­
ent with Eq. (27). But the above condition immedi­
ately implies that 

g(u) = exp (-YU2), (29) 

where 'I' is a constant and that p must satisfy the 
equation 

gradr p = 2yKp. (30) 

Under these conditions, Eq. (28) is then seen to be 
satisfied identically if we set 

'I' = P/2q, (31) 
and consequently 

p-l(ap/at) = 0, (32) 

meaning that the space distribution function is 
stationary in time. Summarizing, separability of the 
velocity and configuration spaces is possible if we 
have a normal distribution in the velocities and a 
stationary distribution in configuration space. 

From Eq. (30) we also have that 

divr [D gradr p - (PD/q)Kp] = 0, (33) 

where use has been made of Eq. (31) and D is the 
"diffusion coefficient." On the other hand, ap/at = ° 
so that Eq. (33) may be thought of as the Smoluchow­
ski equation for the stationary distribution p. Com­
paring with the standard equation of Brownian 
motion,2 we also find that K/P is the force acting on the 
particle per unit mass if we put D = q/P2, which is 
precisely the value for the diffusion coefficient in this 
approximation. 

From our preceding discussion we see that one can 
now write for the probability amplitude'¥ the expres-
sion 

'¥ = exp (-Pu2/4q)1p(r, t), (34) 
with 

1p(r, t) = exp [R(r) + is(r, t)], (35) 

Rand S are real dimensionless functions, and p = 

exp 2R = 1p*1p. Notice also that Eq. (34) satisfies the 

requirement imposed by Eq. (9). Furthermore, p 
has been shown to satisfy Smoluchowski's equation 
so that following the reasoning of Paper II we may 
associate to the probability amplitude 1p the con­
ventional Schrodinger equation, namely 

i a1p/at = _(q/P2)V21p + V1p, (36) 

where V is the time-independent potential also dis­
cussed in Paper II. Multiplying Eq. (36) by Ii, we 
find that 

q/P2 = Ii/2m, (37) 

which, of course, could have also been obtained by 
noticing that the diffusion coefficient D is, for ordinary 
quantum mechanics, equal to (2m)-11i.9 

Finally, from Eqs. (8), (34), and (35), we get that 

:R = -(P/4q)u2 + R(r), (38a) 
and 

S = S(r, t). (38b) 

Since S is u-independent, Eqs. (5) and (6) immediately 
imply that DR/Dt = ° and that F = 0. This last 
result is quite interesting: F is the force exerted by the 
medium on the particle as a consequence of its 
motion through it. According to Eq. (4), this force 
has two contributions both depending, in general, 
on the velocity u. However, from the orthogonality of 
the configuration and velocity spaces, we have just 
shown that both terms cancel each other. The 
physical meaning of this fact is quite clear: As 
the particle moves through its surroundings and the 
motion is described in phase space, the fluctuations 
of the stochastic variable u exert a force on "it. After a 
certain time, however, these fluctuations become 
smoother and smoother so that the particle no longer 
"feels" their presence. Indeed what happens is that an 
equilibrium state is reached by the particle in u space. 
Its subsequent motion in configuration space is now 
described by Schrodinger's equation. 

It is convenient to emphasize at this stage that 
Smoluchowski's equation (33) implies not only 
SchrOdinger's equation (36), but also that ~ = 
iii gradr may be interpreted as the momentum operator 
of the particle as was shown in Paper III, and through 
it we guarantee the validity of the momentum-space 
uncertainty relationships. 

Since in general the force acting on the particle is 
velocity dependent, we cannot resort to a canonical 
distribution in phase space to describe its motion. 
This is possible, as it is shown above, only in the 
particular case where the configuration and velocity 
spaces are orthogonal. This is the reason why Della 

• See Eq. (10) of Paper III. 
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Riccia and Wiener6 necessarily obtain Schrodinger's 
equation, because from the beginning they assume 
both a velocity-independent force (through the 
canonical equations) and a Gibbsian canonical 
distribution. 

Returning to our main discussion and remembering 
that we now have a stationary distribution in configur­
ation space as indicated by Eq. (32) leads to the result 
that S = Set) as it is usual in a quantum-mechanical 
stationary process. Then from Eqs. (11) and (23) we 
get that 

(IiO) = (-Ii as/at) - !m(u2 ), (39) 

where use has been made Eq. of (37). Also, the 
quantity (-Ji as/at) has been shown in Paper III to 
give the total energy of the particle and hence 

(IiO) = E - im(u2 ). (40) 

Nevertheless, this equation has to be interpreted 
exercising a great deal of care. Indeed, from Eq. (23a), 
taking into account that in this particular case 
gradu S = 0 according to Eq. (38b), we have that 

(41) 

which means that all fluctuations of the kinetic energy 
arise only from fluctuations in the kinetic energy of 
flow [c.f. Eq. (23a)]. 

This picture is quite similar to that occurring in the 
approach to local equilibrium of, say, a dilute gas. 
Indeed, for times short compared with the time of 
duration of a collision, the process is quite compli­
cated and the state of the gas described through a 
probability distribution which is defined in phase 
space. However, after a time has elapsed of the order 
of the mean free time, particles have undergone several 
collisions so that one "feels" the medium consisting 
of the remaining others. This process gives rise quite 
r.apidly to a Maxwellian distribution of the velocities, 
whereas the approach to an equilibrium distribution 
in configuration space is much slower. Hence for 
times of order of a few mean free times, the variables 
describing the state of the gas no longer depend on u, 
which obeys a local Maxwell distribution function, 
but depend only on rand t, and furthermore, these 
variables no longer satisfy a complicated Boltzmann­
type equation but their time evolution is given by the 

ordinary equations of macroscopic hydrodynamics. 
In this stage the state of the gas is given through a 
few local thermodynamic quantities which no longer 
depend on u, this latter quantity being a "hidden 
variable. " 

Summarizing our results, we have shown that to a 
classical particle undergoing a Brownian motion 
described by a Markoffian probability density, which 
satisfies the Fokker-Planck equation, a generalized 
Schrodinger equation may be associated which defines 
a complex probability amplitude'Y in the phase space 
of the particle. The advantage of this procedure, 
which, as was pointed out before, is not the most 
general one, is that no limitations are involved insofar 
as the times for which the description is valid. Further­
more, ordinary quantum mechanics follows by taking 
an asymptotic limit which corresponds to considering 
times longer than the relaxation time of the particle; 
i.e., those times for which the description of the system 
by Smoluchowski's equation is practically equivalent 
to the description in terms of Fokker-Planck 
equation. Mathematically this is achieved by a separ­
ability of the velocity and space-time variables in the 
probability density w = 'Y*'Y. This in turn implies a 
normal distribution in the velocities and a spatial 
distribution function which is stationary in time. These 
characteristics lead immediately to the ordinary 
Sc.hrodinger equation in configuration space together 
with the commutation relations for the conventional 
dynamical observables as shown in Papers II and III. 
Therefore, the uncertainty relations are obtained 
directly from the theory and do not have to be 
introduced as an additional assumption. The velocity u 
is eliminated in this limit and hence plays the role of a 
hidden variable, which in the extended theory is 
defined by a statistical distribution. This result is in 
agreement with the recent interpretation of von 
Neumann's theorem on hidden variables as presented 
by Feyerabend.4 
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Th~ prop.ertie~ o~ f~ee-field theories of spinless bosons are investigated. The self-conjugate boson field 
theones of Isospm a, a, t, ... are shown to be nonlocal: the energy, isospin, and number densities fail 
~o commute for spa~elike separations. The difficulty is traced to the necessary occurrence of non­
~ndependent field var!a~les .. For the anomalous case the dependent variables are nonlocally related to the 
mdependent ones; ehmmatlOn of the. former makes superficially local quantities depend nonlocally on 
the. mdependent fields. The connection with canonical field theory is investigated. The p and q co­
ordmates have ~nomalous commutation relations in the nonlocal case. Although the Hamiltonian 
app~ars ~ormall~ eve~ c~se~ the ~nomal,?us the,?ries. are chara.cterized by zero (integrated) Lagrangian. 
Antt~arttc1e conJugatIon. IS l1~vestlgated m detati WIth attentIOn to phase questions. For anomalous 
the~mes !~o types o~ conjugatIon are/ound, one of which nonlocally relates the field to a superposition 
of ItS adJomt. A ~mtary tra~sformatlon is constructed which converts one type to the other. Finally, 
CPT transformatIon properttes of normal and abnormal theories are derived and compared. 

1. INTRODUCTION 

It was recently shown l that the requirements of 
local relativistic field theory preclude the existence of 
half-integral isospin, self-conjugate bosons of zero 
spin. Generalizations2- 7 of this result have shown, 
among other things, that the result is true for arbitrary­
spin particles. Such anomalous particles would violate 
the Gell-Mann-Nishijima formula relating charge, 
hypercharge, and isospin component Ta, provided 
one requires integral charge and identifies the SU(2) 
group in question with the isospin variable of the 
strong interactions. Thus one obtains partial insight 
into the validity of this relation. 

In the present paper we investigate in detail the 
free-field theory of zero-spin bosons of arbitrary 
isospin. Pair-conjugate and self-conjugate types are 
developed in parallel to bring out interesting nonlocal 
features of the anomalous boson field theories. 
Although our attitude in Ref. 1 was essentially to 
"explain" why no such particles are seen, we wish to 
be prepared for the occurrence of violations of 
locality that would accompany their existence. 
Properties of interacting fields involving anomalous 
bosons will be described elsewhere. 

In the most popular nonlocal field theories the 
nonlocality occurs in the interaction; here the free­
field theory itself is nonlocal. The origin of the non-

• supported in part by The Office of Naval Research. 
t Present Address: Instituto di Fisica G.Marconi, Universita di 

Roma, Rome, Italy. 
1 P. Carruthers, Phys. Rev. Letters 18, 353 (1967). 
2 Y. S. Jin, Phys. Letters 24B, 411 (1967). Parts of this paper 

are superseded by Refs. 3-7. 
8 Martin Einhorn (unpublished). 
• G. N. Fleming and E. Kazes, Phys. Rev. Letters 18, 764 (1967). 
5 H. Lee, Phys. Rev. Letters 18, 1098 (1967). 
• B. Zumino and D. Zwanziger, Phys. Rev. 164,1959 (1967). 
7 P. Kantor, Phys. Rev. Letters 19, 394 (1967) 

locality is related to the following fact: The existence 
of the symmetry group requires the existence of all 
2T + 1 field components IPa(x). The manifestly 
isospin-invariant operators (Hamiltonian, Lagrang­
ian, etc.) constructed from quadratics such as 
LaIP:(x)9?a(x) appear to be local operators. How­
ever, for self-conjugate fields expressions of this 
type involve redundant field components. For 
example, IP-a is related to IP:; for integral isospin 
these operators are simply proportional. However, 
for half-integral isospin the relation is non local 
[see Eq. (3.5)]. Thus the energy density and other 
quantities, depend nonlocally on the dynamically­
independent fields. Bad commutators (i.e., commu­
tators failing to vanish at spacelike separations) 
appear throughout the theory (see Sec. 3). It is 
interesting that a similar difficulty8.9 occurs in 
massless spin ! and spin-2 theories: the energy 
density Je(x) is noncausal. For zero mass all but 
two of the components of the field tensor become 
dependent. 

In Sec. 2 we construct appropriate particle and 
field operators describing the general isospin parti­
cles. lo In Sec. 3 the basic commutation rules are 
worked out. Here one finds that the number, energy, 
and isospin densities fail to commute for spacelike 
separations in the anomalous case. Also the local 
commutation rules for the isospin densities are 
anomalous, although, of course, the once-integrated 
form has to be standard. In Sec. 4 the relation to 
"canonical" field theory is investigated for self­
conjugate bosons. The charged scalar theory is 
compared with the self-conjugate isospin-! theory. 

• J. Schwinger, Phys. Rev. 132, 1317 (1963). 
• C. M. Bender and B. M. McCoy, Phys. Rev. 148,1375 (1966). 
10 P. Carruthers and J. P. Krisch, Ann. Phys. 33. 1 (1965). 
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q and p coordinates are introduced by standard 
Fourier-series methods. In a normal (T = 0, 1, 2, ... ) 
theory the dependent q's are related to other q's, while 
in the anomalous (T = t, t, ... ) theory the depend­
ent q's are related to p's. As a consequence the 
commutator algebra of the q and p variables is very 
different in the two cases. However, the Hamiltonian 
looks normal in both cases. A basic distinction is 
that the Lagrange function vanishes identically in 
the anomalous cases. Finally we indicate how the 
method of Lagrange multipliers may be used to 
derive the field equations while treating all components 
of the field as independent variables. 

Section 5 is devoted to a detailed study of anti­
particle conjugation C, with special attention to 
phase questions. Requiring that C map causal fields 
into causal fields further restricts the phase factors 
occurring in the transformation of state vectors. G 
parity is discussed, and a standard phase choice 
recommended. For self-conjugate bosons we can 
construct two types of antiparticle conjugation. One 
maps g;a into g;: in the standard way, while the second 
maps g;a into g;_". For integral-isospin particles, 
the two are entirely equivalent, while for half-integral­
isospin particles the latter operation gives a nonlocal 
connection between Cg;aC-1 and g;:. However, we 
exhibit a (nonlocal) unitary operator which converts 
one operation to the other. The G parity of an 
arbitrary-isospin self-conjugate boson is derived. 

In Sec. 6 the CPT transformation (0) is investi­
gated. For anomalous bosons we find the following: 
If we choose the coefficients of the operators in g;a 
to be real, then an imaginary factor i 2T appears in the 
CPT transformation, while the product of phases 
'Y}C'Y}P'Y}T has tob e ± 1. The other natural choice, with 
i 2a appearing in one factor of g;", leads to 

'Y}C'Y}P'Y}T = ±i. 
In either case 0 2 is -1, in contrast to the natural 
choice for normal theories. 

Note added in proof: A more general treatment, 
valid for any spin, has been given in P. Carruthers, 
Phys. Letters 26B, 158 (1968). 

The appendices derive explicit unitary operators 
necess~l'y for the discussion of antiparticle conjuga­
tion. 

2. BOSON ISOSPIN MULTIPLETS: PARTICLE 
AND BELD OPERATORS 

To introduce our ideas we follow a phenomeno­
logical, particle-oriented approach. Only zero-spin 
bosons are considered, in order to expose the structure 
of the theory in its simplest form. We consider two 
types of isospin multiplets: (1) pair-conjugate multi-

plets, in which the antiparticles of the members of an 
isospin multiplet constitute a distinct isospin multi­
plet; and (2) self-conjugate multiplets, in which the 
antiparticles belong to the same isospin multiplet. 
We shall abbreviate these types by PCM and SCM, 
respectively. The K mesons (K+, K(J), (KO, K-) are the 
most familiar case of a PCM, while the pions (7T+, 
17°, 17-) are a good example of an SCM. 

A. Particle Aspects 

To describe a PCM we introduce 2(2T + 1) 
boson operators a:(k) and aa(k) to create and annihi­
late the "particles" and 2(2T + 1) independent 
boson operators b:(k) and bik) to create and annihi­
late the "antiparticles." Here IX denotes the Ta 
eigenvalue (a! , b: increases Ta by IX) and hence runs 
from - T to + T in integral steps. We shall omit the 
four-vector k, whenever convenient. 

[aik), a~(k')] = [bik), b;(k')] = ()aP{)kk" 

[aik), ap(k')] = [bik), bP(k')] = 0, (2.1) 

[aik), bp(k')] = [aik), b;(k')] = 0. 

We employ box normalization with unit volume. It is 
understood (unless otherwise noted) that k is a 
physical four-vector with ko ~ m, m being the 
meson mass. From our point of view it is quite 
arbitrary which multiplet is called "particles" and 
which "antiparticles." A full understanding of this 
distinction requires a detailed study of the charge 
conjugation (preferably antiparticle conjugation) oper­
ation. This theory is given in Sec. 5. 

Thus for each k we have particle states ITIX) and 
antiparticle states I fIX) defined by 

I TIX) = a: 10), 

ITIX) = b: 10), (2.2) 

where 10) denotes the vacuum state. In order to 
discuss conveniently the group properties of the 
theory we require the various ITIX) to be related to 
each other by isospin operators chosen to obey the 
standard (Condon-Shortleyll) phase relation. (For a 
given IX, the phase of aa or b" can be arbitrarily 
adjusted.) With the standard definition T± = Tl ± 
iT2' we have 

Ta I TIX) = IX I TIX), 

Tal TIX) = IX I TIX), 

T± ITIX) = r±(IX) ITIX ± 1), 

T± ITIX) = r±(IX) ITIX ± 1); 

r ±(IX) = [(T T IX)(T ± IX + 1)]t, 

r±(1X T 1) = r=f(IX). 

(2.3) 

11 E. U. Condon and G. H. ShortIey, The Theory of Atomic 
Spectra (Cambridge University Press, London, 1957), Chap. 3. 
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An explicit construction of these operators is easily 
given: 

T;J;: =! r'f(oc)[a:(k)aa'fl(k) + b:(k)ba'fl(k)], 
k" 

Ta = ! oc[a:(k)aaCk) + b:(k)baCk)]. (2.4) 
k" 

Using the last of relations (2.3) one easily verifies that 
(T;J;:)* = T'f' A simpler form of the isospin operators 
is given as follows. Define (2T + 1) component vectors 

a(k) = col (aaCk», 

b(k) = col (baCk». (2.5) 

Then, if Ii is the usual (2T + 1) X (2T + 1) isospin 
matrix, we have 

T; = ! (a t(k)tia(k) + b t(k)tib(k». (2.6) 
k 

We cite the obvious commutation relations among the 
Ti , aa' and bIZ: 

[a..(k), Ta] = ocaik); [b,,(k), Ta] = ocbik), 

[aik), T±] = r 'f(oc)aa'fl(k); 

[bik), T±] = r 'f(OC)ba'fl(k). 

(2.7) 

These equations show that the a: or the states 
IToc) constitute a standard basis for the irreducible 
representation D(T) of the isospin group SU(2). 
Introducing the unitary operator 

0(1..) = exp (iA' T), 

0(1..) IToc) = ! IT,8) Dp..(A), (2.8) 
p 

where the D's are representation matrices exp (iA • t) 
in the notation of Edmonds,12 the antiparticle states 
IToc) transform exactly as IToc) under 0(1..). 

The operators a: , G" must transform as 

The 4-momentum operators are defined to be 

Pp = ! kp(a:(k)aaCk) + b:(k)baCk», (PC), 
k" 

Pp = ! kpa:(k)a,,(k), (SC). 
ka 

(2.10) 

It follows from (2.7) that Pp commutes with the iso­
spin operator. This was tacitly assumed in the labeling 
of the state vectors by k, T, and oc. The states (or 
creation operators) are assumed to have the standard 
behavior under transformations of the Poincare 
group. 

B. Construction of Field Operators 

In order to investigate the local behavior of a 
quantum-mechanical system in space and time, we 
introduce field operators. We require that the field 
operators transform according to irreducible represen­
tations of the various invariance groups under 
consider.ation [SU(2) , Poincare group, etc.]. From 
such fields we can systematically construct all observ­
abIes. Although the field itself is generally taken 
to be the primary concept, we' prefer to regard it as 
the (essentially) unique construction possessing the 
desired group transformation properties simul­
taneously in the space-time coordinates x and the 
space of the internal symmetries (isospin, in this case). 
Having constructed such fields, we can investigate 
the consistency of various assumptions common to 
relativistic field theories, such as locality, causality, 
etc. 

The positive-energy wavefunctions are 

fix) = (2W)-te-ik''', (2.11) 

where k . x = wxo - k • x defines our metric. The fk 
are orthogonal within the usual Klein-Gordon inner 
product 

(fk,,jk) == iff:.cx)8ofiX)daX = CJkk, , (2.12) 

the integration running over a box of unit volume. O(A)a:O(Arl = ! a~D1,!,)(A), 
p 

0-I(A)aaO(A) = ! D~r'CA)ap. 
p 

There are four independent operators transforming 
(2.9) appropriately under Lorentz transformations and 

according to isospin rotations: 

The antiparticle operators b:, bIZ transform exactly 
as a:, a". 

For an SCM the antiparticle multiplet is not 
distinct, and so there are only 2(2T + 1) operators 
a: , a". The description of the SCM is obtained 
from that of the PCM by systematically setting b 
equal to zero in Eqs. (2.1)-(2.9). 

10 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, N.J., 1960). 

x;" = ! a:(k)f:(x), X:aCx) = ! b:(k)f:(x). (2.13) 
k k 

(Weinberg has discussed the behavior of the creation 
and annihilation operators under Lorentz trans­
formations,13) One might also have expected objects 

13 S. Weinberg, Phys. Rev. 1338, 1318 (1964). 
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like ~k aa(k)f:(x), but these do not behave properly 
under translations as do Xia(X), X;a(x): 

(2.14) 

xiix) transforms as D(T)*, Xia as D(T), under isospin 
rotations. This property follows trivially from (2.9). 

For reasons of causality, theories are not generally 
described separately in terms of the Xia but in terms of 
linear combinations of them. Clearly a superposition 
(X.XI + {3X2 will be noncausal. Thus judicious super­
position of pairs of the type (Xl' xi), (X2' xi), 
(Xl' xi), (X2, xi) with coefficients of equal magnitude 
is called for. 

Since Xia and Xia transform only equivalently and 
not identically under SU(2), we must transform the 
basis vectors in a well-known way.14 Xia transforms 
as D(T)*, so X;a' defined by 

(2.15) 

transforms as D(T). The phase factor; is arbitrary, 
but independent of (X.. We shall make repeated use 
of the formulas 

ija'YJa = 1, 

ija'YJ-a = (_1)2T, 

'YJ-a = (-1)2T'YJa. 

(2.17) 

We now construct four fields transforming las D(T) 

*() * + I * -CPla X = Xla Xia = Xia + 'YJaXI-a, 
*() * + I * +-CP211 X = X2a X2a = X2a 'YJaX2-a, 
* ( ) * + I * + _ (2.18) 

"Pla X = Xia X2a = X1I1 'YJaX2-a, 
*() * + I * -"P2a X = X2a Xia = X2a + 'YJaXI-a· 

CPI and CP2 are completely independent because of 
Eqs. (2.1), so we need only consider one of them and 
drop the identifying index. We thus obtain the field 
operator for SC multiplets: 

Either set, {"PIa, "Pia} or {"P2a, "Pia}, may be used to 
describe PC particles. Arbitrarily choosing [as in 
Eq. (2.2)] the operators {a, a*} to correspond to the 

14 E. P. Wigner, Group Theory (Academic Press Inc. New York 
1959). ' , 

particles, we take "Pa == "PIa to destroy "particles": 

"Pix) = ~ (aa(k)fk(x) + 'YJab~ik)fk*(X». (2.20) 
k 

"Pix) transforms identically to CPa(x) in Eq. (2.19). 
The set {"P2a, "Pia} is not independent of the set 

{"PIa' "Pia}· This is shown by the relation 

"P2-ix) = 'YJ-,.<x~a(x) + (-1)2TijI1X2_a(x» (2.21) 

For integral T, the right-hand side of (2.21) is just 
'YJ-a"Pia(x). For half-integral T, we can obtain equiv­
alence by changing the sign of the b operators in the 
"P2 fields. Note that the independence of the two 
pieces of the field allows us to change the phase of the 
operators in this way. Hence the theories described 
by {"PIa' "Pia} or {"P2a, "Pia} are identical. 

Thus PC bosons are described by the 2(2T + 1) 
independent operators {"Pa' "P:}. It therefore seems 
strange that the SC bosons, which entail half as 
many degrees of freedom, involve the same num­
ber of field variables {CPa' CP:}. The latter set is not 
independent, however, since CP-a is not independent 
of CP:: 

cp_ix) = 'iJ-a(x~a(x) + (-1)2TijaXI_ix». (2.22) 

For integral T we have the expected proportionality 

cp-ix) = 'iJ-aCP:(x), T = 0, 1,2, . . .. (2.23) 

For half-integral T, however, the relation is not local 
because of the minus sign. 

The isotopic spin operators are expressed by means 
of the conventional isospin matrices ti as 

One can easily check the commutation relations of 
these operators from those of the fields given in the 
next section. 

3. CONNECTION BETWEEN LOCALITY AND 
ISOSPIN 

The requirement that the field operators transform 
irreducibly under SU(2) inevitably brings all com­
ponents of the field into the theory. In particular, 
various observables, transforming as some tensor, 
need all components of the fields for their construc­
tion. In the case of SC fields the requirement of SU(2) 
invariance thus introduces redundant fields into the 
theory as shown by Eq. (2.22). For integral isospin 
these dependent fields can be eliminated using the local 
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relation (2.23). However, as we now show, this process 
is nonlocal for half-integral isospins. Thus isospin 
invariants like I.. cp:(x)cp..{x), which appear local, are 
nonlocal when expressed in terms of independent fields 
(e.g., with IX > 0). 

A. Relation of IF-" to IF: for SC Fields 

We recall the definitions of the well-known functions 

id+(x - y) = If,cCx)f:(y), 
k 

id_(x - y) = - I fk* (X)fk(Y) , 
k 

d(x) = d+(x) + d_(x), 

d(l)(x) = i(d+(x) - d_(x». 

(3.1) 

d(x) vanishes for spacelike x, in contrast to d(1)(x), 
which only decays exponentially outside the light 
cone. Recall that d is odd, d(l) even, and that 
fl (t = 0) = -<5(x), d(t = 0) = 0, fl(ll (t = 0) = O. 
From (3.1) and the orthogonality relations (2.12), 
we find that 

i If:(X')aod(X' - x)d3x' = -if:(x), 

i If:(X')aod(l)(X' - x)d3x' = f:(x). (3.2) 

We thus find [cf. (2.13)] the Klein-Gordon inner 
products 

(xl,.(X'), d(x' - x» = -iX~,.(x), 

(Xl,,(X'), d(l)(x' - x» = X~,.(x). (3.3) 

Thus, for integral T, (2.22) becomes 

CP-a(x) = 1]-ai([Xl,.(X') + ?}"X~-a(x')], d(x' - x», 

cp_ix) = -1]-"I cp:(X')a~d(X' - x)d3x'; 

T = 0, 1,2, .. '. (3.4) 

Evaluating the integral at I' = I recovers Eq. (2.23). 
For half-integral T the extra minus sign is compen­

sated for by using dO): 

f/J-a(x) = i1]-af cp:(x')a~d(l)(x' - x)d3x'; 

T = 1, i, t, .. '. (3.5) 

Thus f/J-,,(x) is a nonlocal superposition of f/J:(x). 
Moreover, contributions come from spacelike regions 

(x - X')2 < O. Setting I = I' in (3.5) gives 

cP_,.(x) = -i'7-"I ¢:(x', t)d(1)(x' - x, 0)d3x'; 

T = 1, t, t, .. '. (3.6) 

(It is clear that the time derivative supplies the 
requisite minus sign.) In Eq. (3.6) the entire integral 
is in a spacelike region relative to x! 

B. Commutation Relations 

For PC fields the particle-operator commutators 
(2.1) and definitions (3.1) give 

[V',,(x), V'p(x')] = 0, 

[V',,(x), V'~(x')] = i<5",d(x - x'). (3.7) 

The momentum density conjugate to V',,(x) is tiJ: (x) 
and the theory is entirely standard. 

For SC fields the fact that the positive and negative 
frequency components of the field involve dependent 
operators brings about an entanglement for the case 
of half-integral isospin. We find the results 

[cpix), cp~(x')] = i<5"pd(x - x'), 

[f/J,,(x), cpix')] 

= <5"._p1]p I [fk(X)f:(x') - (_1)8Tf:(x)fk(X')]. (3.8) 
k 

Thus the second commutator is noncausal when 2T 
is an even integer: 

[cp,,(x), cpp(x')] = i<5"._p1]pd(x - x'); T = 0, 1, 2,"', 

[cp,.(x), cpix')] = <5"._p1]pd(l)(x - x); 

T = 1, i, t, .... (3.9) 

The noncommutativity of CP-a with f/J" can be regarded 
as a consequence of the dependence of f/J-" on f/J:. 
[The second line of (3.9) is easily derived from (3.5) 
and (3.8a).] 

C. Charge Density. Energy Density. and 
Isospin Density (Half-Integral Isospin) 

The local densities of charge, isospin, and energy 
are expressed in terms of quadratic functions of the 
field variables. For these quantities to be local 
observables, they must all commute at spacelike 
separations. This is automatic for PC bosons and for 
integral-spin SC bosons, because the commutation 
function A vanishes outside the light cone. However, 
even in local theories, the charge density is not a 
local observable. In this section all expressions are 
valid for half-integral isospin. 
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First we verify that the energy density Je(x) may be 
taken to have the usual form. From the expressions 

~ f p:(x)p",(x)d
3
x 

,. 1 * * * = "'- - [2a.,(k)a",(k) + 1JA,(k)a_i -k) 
k'" 2Wk 

+ ii"a_a(k)a",C -k)], 

~ f ¢:(x)¢,,(x)d
3
x 

w~ * * * = L - [2a,,(k)aa(k) - 1JlI.a" (k)a_i -k) (3.10) 
kit 2Wk 

- iJ"a_ik)aaC -k)J, 

~ f Vp:(x). Vprt(x)d
3
x 

= L ~ [2a:(k)a,,(k) + 1Jlta:(k)a~,,( -k) 
ka 2Wk 

we find that 

H = 1 wka:(k)aik) =fJe(X)d3x, 
ka 

Je(x) = ! 1 :¢:(x)rp..(x) + V(f:(x) (3.11) 
2 a 

• Vp..{x) + m2p:(x)pix):. 

The charge density O'(x) and the isospin density t(x): 

* H O'(x) = ti L Pa(x)oopix), 
11. 

(For PC bosons the corresponding densities are 
found by removing the factor t and substituting 'Pa 
for Pa.) For half-integral isospins, we have the 
results 

[Je(x), Je(x')J =l= O,} 
[O'(x), O'(x')J =l= 0, 

[I.(x), fj(X')] =l= 0, 

(x - X')2 < 0, 

T = t, t-, t, .. '. (3.13) 

Nor does Je(x) commute with O'(X') or t(x') for 
spacelike separations. 

These results can be verified by computing specific 
matrix elements. The complicated but straightforward 
computation is omitted here. 

Although the local commutation rule 

[t.j(x), t;(x')l"o="'" ;tI= iE~;ktk(x)l5(x - x') (3.14) 

fails in this case, the once-integrated form 

[Ti , t,(x)] = iE#~k(X) (3.15) 

is valid, as is obvious from the construction of f,(x). 
Similar calculations show that Je(x) is noncausal. 

We quote the additional results: 

[t(x), tp..{x')] = itapPix)8oa(x - x') 

+ t1J"t"._pcp;(x)8oa(1l(x - x'). (3.16) 

Despite appearances, the integrated isospin operator 
has the correct commutator with tp", as is easily 
verified 

[Je(x), tp",(x')] 

= !.. {tp..(x)~(x - x') + ¢".(x)l1(x - x') 
2 

+ Vp,ix), V~(x - x')} 

+ t1J_",{~(l)(x - X')cp~..(X) + 11(l)(x - xt)rp~ix) 

+ V~(l)(X - x'). Vtp~",(x)}. (3.17) 

Here the dot denotes differentiation with respect to Xo. 
Setting Xo = x~ and integrating over x, we recover the 
equation of motion for cP,,: 

[Pa(x), HJ = irp,,(x). (3.18) 

All these examples show the unfamiliar and even 
pathological features of theories of the type considered . 
If one postulates that relativistic quantum field theory 
must be local, then one can summarize our result 
by saying that only real representations (integral 
isospin) of the isospin group SU(2) are permitted for 
self-conjugate bosons. The most serious difficulty is 
the failure of the energy density to commute at space­
like separations. This fact leads to difficulties with 
relativistic invariance. 

4. RELATION TO CANONICAL 
FIELD THEORY 

Anomalous theories of the type introduced in Ref. 1 
were not discovered in conventional Lagrangian field 
theory. In the latter an SC multiplet of isospin T 
would be described by 2T + 1 Hermitian fields 
carrying the same mass. As such theories are really 
local, there was no chance of running across the 
anomalous SC bosons. However, the relation between 
the two theories is very instructive. In terms of the 
(redundant) set of fields {CPa, tp:}, all physical quan­
tities refer to a single space-time point, for example, 
the energy density 

Je(x) = t L :¢:(x)¢,,(x) + Vp:(x) 
" 
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and the Lagrangian densit), here defined to be 

C(x) = t! :O/lIP:(x)o/llPix) - m21P:(x)IP,.(x):. (4.2) ,. 

Only when we eliminate the dependent fields, or test 
commutativity at spacelike separations, do we dis­
cover the difficulties in the theory. 

Before proceeding to the general case, we give a 
detailed comparison of the charged scalar theory and 
the SC isospin-t theory. Both involve the same number 
of degrees of freedom. 

A. Comparison of Charged Scalar Theory and 
SC Isospin-! Theory 

The charged scalar theory is described by a complex 
field: 

c/>(x) = ! (akfk + b:f!), 
k 

c/>*(x) = ! (a:f: + bdk)' (4.3) 
k 

Using the same a's and b's, we can construct the field 
fP,. (T = !) (choosing ~ = I): 

fPi(x) = ! (akfk + b:f:), ak == a!(k), 
k 

fP-i(x) = ! (bdk - a:f:), bk == a_!(k). (4.4) 
k 

In each case the Hamiltonian is 

H =! wia:ak + b:bk ). (4.5) 
k 

The isospin operators are defined by 

T+ =! a:bk , 
k 

L =! b:ak , (4.6) 
k 

Ts =! !(a:ak - b:bk )· 
k 

These operators commute with H, Eq. (4.5), for 
either theory. However, differences occur in local 
quantities. One can check in detail the result 

[lPix), Til = ! (i'Ti),.fJlPp(x). (4.7) 
fJ 

Thus, although IP! = C/>, the operation [c/>, T+l = IP-! 
produces an operator independent of c/> and c/>*. 
Thus the local densities constructed from c/> and c/>* 
will not, in general, be invariant under unitary 
transformations exp (fA' T). An exception is the one­
parameter subgroup exp (iwTa), which is the generator 
of phase transformations 

eiwT3c/>(x)e-iWT3 = e-iwc/>(x). (4.8) 

As everybody knows, this gauge transformation 
leaves the charged scalar theory invariant, and allows 
one to identify charge (Q) with Ta. 

It is instructive to examine the Lagrangian density 

eChsc = o/llP*o/lc/> - m2c/>*c/>, 

esc = t ! (o/llP:o/llP,. - m21P: IP«). (4.9) ,. 

Introducing the operators 

Xl = ! adk(x), XI/l == 0/lXI, 
k 

X2 =! bdix), X2/l == O"X2' 
k 

we find that (4.9) reduce to 

(4.10) 

eCh BC = esc + X2,.xf + X:,.X~* - m
2
(XIX2 + X:X:), 

esc = xI:xi + X~X~ - m2(X:XI + X:X2)' (4.11) 

esc is of simpler structure and is invariant under a 
larger internal-symmetry group. 

It is easy to show that the Lagrangian vanishes for 
the anomalous case 

Lsc = I esc(x)dSx = O. (4.12) 

The result (4.12) is true for all half-integral-isospin SC 
theories. 

The pertinent field commutators are 

[c/>(x), c/>*(x')] = [lPix), 1P:(x')] = ia(x - x'), 

[lPix), IP-ix')] = (-1)2«a(l)(x - x'). (4.13) 

The previous analysis shows how one can proceed 
systematically to modify a given theory in the direction 
of increasing symmetry. The following sequence 
can be used to convert the charged scalar theory 
to the SC-(T = !) theory. Begin with the fields C/>, c/>*, 
and their operators ak and bk • From SchwingerlS we 
know that the a's and b's can be used to construct 
an algebra (SU(2» leaving the energy invariant: 

H = f ~t(k)~(k)Wk' ~(k) = (::) , 

[T;, H] = 0, T; =! e(kHT;~(k). (4.14) 
k 

These T; coincide with those given in Eq. (4.6). 
Now return to the original fields and subject them to 
transformations of the new group. By construction, 
the field c/> transforms as a representation of the group, 

15 J. Schwinger, On Angular Momentum, U.S. Atomic Energy 
Commission NY03071, reprinted in Quantum Theory of Angular 
Momentum, L. C. Biedenharn and H. Van Dam, Eds. (Academic 
Press Inc., New York, 1965). 
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and so new fields are generated. These fields (here 
rp-l and rp~l) are clearly not dynamically independent, 
but are needed if we modify the local densities so that 
they are invariant under transformations of the 
enlarged group. The increased symmetry is obtained, 
in the present case, at the expense of locality. 

B. Canonical Formalism for Self-Conjugate Bosons 

We have previously noted that "manifestly isospin­
invariant" densities such as (4.1)-(4.2) contain de­
pendent fields. Because of this the standard Lagrangian 
formalism becomes complicated. For integral iso­
spins the problem is circumvented by eliminating the 
redundant fields, at the cost of manifest covariance. 
For half-integral isospins it is difficult (or at least 
ugly) to eliminate the dependent fields. Using the 
method of Lagrangian multipliers, one can treat the 
field components as independent. Before discussing 
this technique, we describe the formulation of the 
free- field theory in terms of the standard "p-q" 
variables.I6 

We specify the values of the operators 

rpaCx) , 7TaCX) == ¢:(x); 

[rpaCx), 7Tp(X')]",o="'o' = it5(x - x')t5ap (4.15) 

by the discrete Fourier coefficients q..(k) and PaCk), 
defined in the usual way by 

(4.16a) 

(4.16b) 

q:(k) = (aaCk) + 'YJaa~..( -k»/(2w)1, (4. 17a) 

paCk) = rj:(k) = iw(a:(k) - ijaa-a( -k»/(2w)1. 

(4.17b) 

The Pi. and qa are normal-mode coordinates. 
From the commutation rules for a, a*, we find 

[q..(k), pP(k')] = it5apt5kk·, 

[qa(k), qp(k')] = - 2~ (1 - (-1)2T)'YJa t5a._pt5k._k·, 

[p..(k),pp(k')] = tw(1 - (-1)2T)ijat5a._pt5k._k·, 
[q,.(k), q;(k')] = 0, (4.18) 

[PaCk), p;(k')] = 0, 

[q:(k), pP(k')] = tiija(1 + (-1)2T)t5a._pt5k._k·. 

The various dependencies revealed by (4.18) can be 
understood in terms of the following relations. From 

16 See, for example, G. Wentzel, Quantum Theory of Fields 
(Interscience Publishers, Inc., New York, 1949). 

the equation 

rM~a( -k) = ('YJaa~,.(k) + (-1)2Taa(k»/(2w)1, (4.19) 

we find two classes of relations 

'YJaq~a( -k) = q,.(k); T = 0, 1,2, .. " (4.20) 

'YJaq~,.( -k) = rj,.(k)/(iw); T = to I, t .. '. (4.21) 

Eq. (4.21) expresses the content ofEq. (3.6), as can be 
seen by substituting (4.l6a) in the latter. 

Notice that (4.7) can be put in the form 

q_..( -k) = i'YJ"Pa(k)/w. (4.22) 

The difference in the commutation rules (4.18) is 
simply a consequence of the basic distinction revealed 
in Eqs. (4.20)-(4.21). For integral T, q-a( -k) is 
proportional to another coordinate q:(k) of opposite 
quantum numbers; while for half-integral T, q_..( -k) 
is proportional to a momentum Pa(k). 

From this point of view there is no fundamental 
virtue of the integral-isospin case, for which all the 
information in Eqs. (4.18) reduces to 

[q,.(k), qp(k')] = [p,.(k), pp(k')] = 0, 

[q..(k), pP(k')] = it5ap t5kk·, (4.23) 

'YJaq~,.( -k) = q..(k); T = 0, 1,2, .... 

For half-integral isospin we have, instead of (4.23), 

[q..(k), pP(k')] = it5apt5kk·, 

[q:(k), pP(k')] = [q..(k), p:(k')] = 0, (4.24) 

q-,.( -k) = i'YJaPa(k)/w; T = t, I,!, .... 
Using (4.17), we see that the Hamiltonian has the 

usual form 

H = ! t(p:(k)p..(k) + w!q:(k)qa(k» 
ka. 

= ! wka:(k)a,.(k). (4.25) 
ka 

(As elsewhere, we normal order the aa') Either 
expression in (4.25) is equal to the space integral of 
Je(x) in Eq. (4.1) [cf. Eq. (3.11)]. 

We can now express H in terms of independent 
P and q variables. From (4.20) (and a similar expres­
sion for Pa) we learn that for integral isospin 

-T T 
! p:(k)paCk) = ! p:(k)p..(k), 

k.a=-I k.a=l 
-T T 
! w~q:(k)q..(k) = ! w!q:(k)q..{k), 

k.a=-l k.a=l 

H = t {HP:(k)po(k) + w!q:(k)qo(k» 
(4.26) 

T 

+ a~l(p:(k)p..(k) + w!q:(k)qa(k»}. 
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For half-integral isospin we find from (4.22) 

-T T 
! p:(k)pik) = ! w!q:(k)qik), 

k.a=-! k.,,=! 
-T T 

! w:q:(k)qik) = ! p:(k)p,,(k), 
k.a=-! k.,,=! 

(4.27) 

T 

H = ! (p:(k)p,,(k) + w!q:(k)qik». 
k.a=! 

Eq. (4.26) has the usual form. (4.27) looks so 
innocuous that one would never suspect the unusual 
features the theory has when supplied with the 
commutation rules (4.24) and the field 'P,,(x) defined 
by (4.16). 

Next consider the Lagrangian. We define it in a 
standard way by 

L = ! pik)(Mk) - H 
k." 

= i !(p:(k)pik) - w:q:(k)qik». (4.28) 
k" 

In terms of creation and annihilation operators, (4.28) 
is 

L = -i ! wk(fJ"a:(k)a_i -k) + ij",aik)a_i -k» 
k" 

= f t(x)d3x. (4.29) 

where I:(x) is given by (4.2). 
Now we find a basic distinction between integral 

and half-integral isospin. From Eqs. (4.26) we see 
that for integral isospin 

L = t {!<P:(k)Po(k) - w:q:(k)qo(k» 

+ "~l(P:(k)Pik) - w:q:(k)qik»}, (4.30) 

while Eqs. (4.27) show that 

L = 0; T = i, t, !, . . . . (4.31) 

The result (4.31) generalizes the special case (4.12) 
to all half-integral isospins. 

Finally, we ask whether the equations of motion 
can be derived from the variational method. This 
would be trivially true if the fields entering into I:(x), 
Eq. (4.2), were independent. The fields can be 
treated independently if we use the method of Lag­
range multipliers. Define the modified Lagrange 
function 

I:'(x) = I:(x) + )'<I>1(X) + !l<l>2(X), (4.32) 

where )., !l are constants and <l>i(X) are (isospin 

scalar) positive-definite functions: 

<1>1 = ! <I>:(x)<I>ix), 
a 

<1>2 = !<I>:,.(x)<I>:(x), <I>",.(x) == o",,<I>a(x), (4.33) 
" 

<l>ix) == 'P-lx) + ifJ-af ¢:(x', t)A(l)(x' - x,0)d3x'. 

Since each term in <l>i is positive-definite, the sub­
sidiary conditions 

f <l>i(x)d3x = 0 (4.34) 

imply the vanishing of <1>", <I> a", which, in turn, 
enforces the dependency relation (3.6). Hence the 
variation of 1:' due to 1J'P", say, is 

1JI:'(x) = 1J!:(x) + [~()'<I>:1J<I>" + !l<l>:,,1J<I>a,,) + H.C.] 
= 1Jt(x), (4.35) 

by virtue of (4.34). Hence the equation of motion 

(4.36) 

follows as usual. 

5. ANTIPARTICLE CONJUGATION FOR 
ISOSPIN MULTIPLETS 

Experience shows that many laws of nature are 
invariant under antiparticle conjugation. This seems 
to be the case for the strong and electromagnetic 
interactions. Even when this operation is not a 
symmetry, a proper formulation of the transformation 
is essential to study the asymmetry itself. Our 
definition is certainly based on the type of transforma­
tion which leads to a symmetry, namely, that to the 
behavior of a particle state with four-momentum k", 
(k2 = m2), additive quantum numbers {v} (such as 
T3 , charge, hypercharge,···) corresponds an 
identical evolution of an antiparticle state with four 
momentum k" and opposite additive quantum 
numbers {-v}. Here we only consider isospin 
variables, so that the set of variables describing a 
particle state is (k, T, IX). The general approach has 
already been sketched in the appendix to Ref. 10. 

As in Sec. 2, we begin with the particle approach, 
defining a unitary operator C which maps particle 
operators into antiparticle operators, preserving the 
commutator algebra. Our discussion of the PC case is 
standard, except that a careful treatment is given of 
the phase factors which occur. In addition, we 
exhibit explicitly17 a continuous transformation 

17 See Appendix A. 
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(connected to the identity) of which C is a special case. 
By requiring that C map causal fields into causal fields 
(all having definite isospin-transformation properties), 
we can restrict the phase factors entering the theory. 
Virtues of different phase choices are discussed. G 
conjugation is also discussed. 

For SC bosons two possible field transformations 
are possible. One, C1 , maps q;,. into q;: in a con­
ventional way; the second, Cz, maps qJ,. into q;_,.. 
The latter transformation is therefore nonlocal for 
half-integral isospin. However, we exhibit a unitary 
operator (nonlocal) which converts C1 to Cz, so that 
the two cases can, in a sense, be regarded as equivalent. 
A general proof is given that the G parity of a self­
conjugate, integral-isospin boson is '1']0( -l)T, where 
'1']0 is the charge parity of the Ts = 0 member of the 
multiplet. 

A. Antiparticle Conjugation for PC lsospin Multiplets 

The antiparticle transformation C maps ITOt) onto 
IT - Ot) and vice versa. To be useful, we also require 
that the algebra of the field operators "P,. be preserved 
under the transformation. 

The most general possibility is therefore 

C I TOt) = A,. IT - Ot), 

C I TOt) = f-t,. IT - Ot), (5.1) 

where A,. and f-t,. depend on Ot. The a's and b's have to 
transform as 

(5.2) 

We require that C be unitary, which preserves the 
operator structure and requires that 

l,.A,. = p,,.f-t,. = 1, 
* - * [a,., ap] -0 A,.Ap[b_,., b_p] = fl,.p. (5.3) 

Two applications of C yields 

C2 *C-2 ~ * a,. = 1I,.f-t_,.a,., 

C2b:C-2 = f-t,.A_,.b:. (5.4) 

From this we cannot yet conclude that C2 = '),I, 

since Aaf-t-a is not 1, a priori. Consider the effect of 
Con "Pa: 

C"P,.(x)C-1 = ! X,.b_,.(k)!k(X) + 'I'],.f-t_,.a:(k)!k(X). 
k 

(5.5) 

We wish to formulate our theory in terms of fields 
with definite transformation properties under SU(2). 
There are only four which will be local: "P,., "P:, 

"P-,., "P~II' Inspection shows that only "P: has the 
right structure to qualify: 

"P:(x) = ! a:(k)!:(x) + fiab-a.(k)!k(X). (5.6) 
k 

Requiring C"P,.C-l = ',."P: gives the constraints 

,,. = 'YJ,.f-t-,., 

fill',. = l,.. 

Elimination of {,. gives (remember fi,.'YJ,. = 1) 

#_" = A,., ,,, = 'YJal,.. 

(5.7) 

(5.8) 

Therefore (5.4) simplifies to the desired form (J..,.f-t-,. = 
1): 

C2 *C-2 * a" = a", 
C2b:C-2 = b:, (5.9) 

C2 = J..I, 

the last step following from Schur's lemma. A can 
now be shown to be unity. From Eqs. (5.8) and (5.1) 

C I TOt) = A,. IT - Ot), 

C I TOt) = X_,. IT - Ot), 

C2ITIX) = A,p IT - IX) = J..,.X,. ITOt) (5.10) 

= ITOt). 

To summarize, the preservation of the operator 
algebra and state vector norms require C-l = ct. 
Further requiring that C map "P.. linearly to "P: 
implied C2 = 1, so C = C-l: 

C = C-1 = Ct , 

Ca:C-1 = A,.b~,., 
Cb:C-1 = X_,.a~,.. 

(5.11) 

An explicit form for such an operator C is given in 
Appendix A. "P,. transforms as 

o C C-1 r * "P,. = "P,. = "',."P,., 

["P~(x), "Pf(x')] = {,.~p["P:(x), "Pp(x')] (5.12) 

= -ifl,.pLl(x' - x) = ifJ,.pLl(x - x'). 

Eq. (5.12) verifies the preservation of the equal-time 
commutation relations under C. 

A convenient choice of A,. is simply 'YJo'YJ,., where 'YJo 
is arbitrary. (Thus we may take it to be unity.) This 
makes "P,. transform nicely, but the particle operators 
inherit a phase. 

Case 1: A,. = 'YJ,.fio 

C C-l * "P,. ='YJo"P,., 
C *C-l - b* aa ='YJO'YJa -a' (5.13) 

Cb*C-1 - * ,. = 'YJo'YJ-aa- ... 
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The isospin operator transforms as so that G' commutes with T: 

CTkC-I = (1jJ*, tk1jJ*) = -(1jJ, lk1jJ), G'TG'-l = T. (5.22) 
CT1C-I = -TI' 

CT2C-I = + T2, 

CTaC-I = - Ta . 

(5.14) The matrix elements of RI can be found from the 

This result is also easily obtained from Eqs. (1.7). 
lk denotes the transpose of tk • C is not the same as 
rotation by 7T about the 2 axis, although its effect on T 
is the same. 

This brings us to G parity. Clearly, R2 = exp (irrT2) 
preceding C will give T -- T under G = CR2 : 

GTG-I = T, 

G == CR2 • (5.15) 

Thus G maps isospin multiplets into antiparticle 
isospin multiplets (here we choose 'Y/o = 1): 

R2{:~}R21 = (_1)T+«{:~:}, (5.16) 

G{a:}G-I = 'YI (_l)T+a{ b: ) 
b: '/-a (_1)2T a: 

= ~{(_~;Ta:}' (5.17) 

Thus if we choose ~ = 1 in 'Y/a [Eq. (2.16)] the G 
conjugation simply interchanges the a and b operators: 

GaaG-1 = ba, 

Gb«G-1 = aaC-1)2T, 

G1paG- 1 = ( -l)T+a1jJ~a. 
(5.18) 

With these phase conventions, C has a simple effect 
on the field 1jJa(x), while G has a simple effect on the 
particle and isospin operators. 

Case 2: Aa = 1. Choosing Aa to be unity makes the 
particle states transform simply under C': 

C' *C,-l = b* C'b*C,-1 = a* a(J -(I' (Z -(I' 

C' C,-l * 1jJ« = 'Y/a1jJa' (5.19) 

Now the particle operators transform simply, while 
the field carries the phase factor 'Y/a' The effect on the 
isospin operator is now distinct from Eq. (5.14): 

C'TIC'-l = TI , 

C'T2C'-1 = -T2' 

C'TaC'-1 = - Ts· 

(5.20) 

In terms of C' we have to define a different G' by 

(5.21) 

expressions 

(Texl exp (irrT2) I Tex') = l5a.-a.{ _l)T-a, (5.23) 

(Trxl exp (irrTl) I Trx') = i2T l5a._«,. 

Some elementary manipulations then give the effect 
of G' on the important operators in the theory: 

G'a:G,-1 = i2Tb~a, 

G'b:G,-1 = i2Ta~a' 
G' *G,-l _ ·2a * 1jJa - I 1jJ-a' 

(5.24) 

Using equations from Appendix B, we can change 
the phase at will. We recommend the "standard" 
choice summarized in Eqs. (5.11)-(5.13). 

B. Antiparticle Conjugation for SC Isospin Muitipiets 

For SC multiplets the antiparticle transformation 
must satisfy 

Again, Aa obeys 

C ITex) = Aa IT - ex), 

C *c-l 1 * aa = Aaa_a· 

1aAa = 1, 

(5.25) 

(5.26) 

and the particle-operator algebra is preserved by (5.25). 
Two applications of C yields 

C2 *c-2 1 1 * art. = AaA_aaa' (5.27) 

In order to determine the allowed values of Aa , we 
require that C map lfJa into a field having definite 
isospin transformation properties under SU(2). The 
independent fields which could emerge from ClfJaC-I 
are (for fixed ex) lfJa' lfJ-a, lfJ:, lfJ~a' 

For convenience we introduce two operators 
(independent for fixed ex): 

Xl = ! aaCk)fix) = Xla' 
k (5.28) 

The functions XlIX were previously defined in Eq. (2.13). 
Under C, the Xi and their conjugates transform as 

CXIC-1 = Xrt.X2, 

CX2C- I 
= X-aXI' 

C *c-l '1 * Xl = AaX2' 
C *C-l 1 * X2 = A_aXI' 

(5.29) 
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The various gJ" are given in terms of the Xi by 

* gJ" = Xl + 1/"X2' 

gJ: = X~ + ii"X2' 

gJ-" = X2 + 1/-"X~' 
* * + -gJ-" = X2 'YJ-"Xl' 

From (5.29)-(5.30) we find the result 

(5.30) 

(5.31) 

Clearly, the right-hand side of (5.31) is independent 
of gJ" and gJ~". We next see whether A" can be adjusted 
so that (5.31) is proportional to gJ: or gJ_". 

Thus we see whether we can obtain 

(Case 1) (5.32) 

There are many solutions of (5.38). Whole families 
can be generated using the unitary transformations 
of Appendix B. As yet we have no physical inter­
pretation of this freedom. One simple choice is to 
take A" = 'YJc' independent of a. This leads to a 
simple transformation for the particle operators, but 
then the fields transform in an ugly way [see Eq. 
(5.19)]. Instead, a useful choice is 

(5.40) 

Choosing 'YJ" real and equal to (-1)" [Eq. (5.34)] 
gives G" = 'YJc independent of a, so that 

(5.41) 

or 

C2gJ"C;l = p"gJ-" , (Case 2) 

where IG"I = Ip,,1 = l. 

The components of isospin transform under C 
(5.33) just as they did in Eq. (5.l3). Thus Eq. (5.15) is an 

appropriate definition for G conjugation. A calcula­
tion similar to that of Eqs. (5.16)-(5.17) gives 

Bl : Cl gJ"C1l = G"gJ:, C2 = 1 

In Case 1 we have to satisfy 

G" = 1/"A_" , (Case 1) 

ii"G" = X"' (5.34) 

in direct analogy to Eq. (5.7). Elimination of G" 

gives the constraint 

A_" = X"' (Case 1) (5.35) 

which then implies A"A_" = 1, so that from Schur's 
lemma Eq. (5.27) gives 

C~ = AI (Case 1) (5.36) 

(IAI = 1). That A = 1 follows from Eqs. (5.25) and 
(5.35): 

C~ I TO() = A"Cl IT - O() = A"A_" I TO() 

= ITO(). (5.37) 

Because of Eq. (5.35) A" has to satisfy 

A"A_" = l. (5.38) 

As it is awkward to consider integral and half­
integral multiplets simultaneously, we consider these 
cases separately. 

Integral Isospin. In this case there is always a 
member with Ta = O. Thus from (5.38) we see that 
the charge parity 1/c is ± 1 : 

1/c = Ao = ±1, 
C ITO) = 1/c ITO). (5.39) 

(5.42) 

Thus the states ITa) are eigenstates of G with G 
parity 1/0< _1)T, an oft-quoted and little-proved 
result: 

G ITa) = 'YJo ITa), 

'YJo = 'YJO< -1)T. 

The field gJ" transforms under G as 

(5.43) 

(5.44) 

on using (2.23) and recalling our choice 1/" = (-1)". 
The use of 1/0 as a nontrivial multiplicative quantum 
number is well known. 

Half-Integral Isospin. We now turn to the anom­
alous case. As in the PC case, an O(-independent 
solution of Eq. (5.38) makes gJ" transform with an 
a-dependent phase. Therefore we satisfy (5.38) by 
generalizing (5.40) to 1/c( _i)2" for half-integral 0(. 

(Again 1/c is ± 1.) We then find the results 

A" = 'YJ cC - i)2" = 'YJ ce-i1T", 

Ca"C-l = i2"'YJca_" , 

CgJ"C-l = i2T1/cgJ:. 

(5.45) 

Here we have chosen 'YJ" to be (-1 )T-". The isospin 
operator transforms under C in the usual way [Eq. 
(5.13)], and so G is defined by Eq. (5.15). Under G, 
we have 

(5.46) 
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We now turn to alternative two of Eq. (5.32). 
In this case the coefficients are subject to the condi­
tions 

C2 = VCl' 

V = exp (-i7T'NT). (5.55) 

11I1A_1I = 11-IIPII' 

PII = 111 , 

Elimination of PII leads to the condition 

AIIA_ .. = (_1)2T. 

Thus we cannot claim that Cl and C2 are essentially 
(5.47) different. However, the nonlocal peculiarities of the 

theory are brought out once again if we inspect Eq. 
(5.52) more closely. Employing Eqs. (3.5) to express 

(5.48) rr-II in terms of rr: , we find that 

An immediate consequence of this is that q is not a Cgrr,.{x)C2"l = 11eifrr:(x')a~Ll (l)(x' - x) d3x', (5.56a) 
multiple of the identity [cf. Eq. (5.37)] 

These results suggest that this C can be represented 
by a rotation R2 = exp (i7T'Ts) and a phase adjustment. 
However, first we dispose of the integral-isospin case, 
which leads to nothing of interest. 

Integral Isospin. In this case (5.48) reduces to 
(5.38). Choosing All = 11e( _1)11 as before, we find 

Cga: C2"l = 11 e( -1 )"a~" , 
Cgrr"C21 = 11e( -1)'"rr-1I = 11err:(X), (5.50) 

the last step following from the convenient choice and 
Eq. (5.30). There is now no distinction from Case 1. 

Half-Integral Isospin. The anomalous fields are 
more interesting. We solve Eq. (5.48) by the choice 

(5.51) 

where 11e = ± 1. The various quantities transform as 

C2a:C2
1 = 11cC _1)THa~ .. , 

C2rr .. C21 = 11e( -l)THrr_ .. , 

C~ = -1. 

An explicit formula for C2 is 

C2 = CoW, 

(5.52) 

(5.53) 

where Co and Ware unitary operators defined in 
Eqs. (B I 0) and (B 17). [w = 0 or 7T', depending on 
whether 11e is + I or -I; ;11 is (_I)T+ .. in the 
formula for w.] From Eqs. (5.52) it is clear that an 
(equivalent) expression is simply a rotation by 7T' 

about the 2 axis followed by a phase transformation: 

C2 = exp [i~N (1 -11c)J exp (i7T'Tg). (5.54) 

According to a general theorem, Eqs. (5.53) and 
(5.54) are equal to a phase. 

Using the results of Appendix B, we can construct 
a connection between the operators C1 of Eq. (5.45) 

(5.56b) 

where we have chosen 11 .. to be (_1)T-1I in arriving 
at the first line of (5.56). Thus C2 is a nonlocal 
operation, and the operator V, which converts 
(5.56a) to (5.56b) is a nonlocal transformation. In 
configuration space, C2 produces a smear in the 
region within a pion Compton wavelength of the light 
cone, in contrast to the local character of Cl • 

6. CPT TRANSFORMATION FOR 
ISOSPIN MULTIPLETS 

The difference between abnormal and normal 
particles also shows up in the CPT transformation, 
called 0. The abnormal particles behave differently 
under 0 than normal particles, for which locality 
plays a rolel8 in establishing the "normal" 0 opera­
tion. As pointed out by Kantor7 and by Zumino 
and Zwanziger, 6 this property may be used to give a 
simple (though physically indirect) demonstration 
of the incompatibility of the abnormal field theories 
with the existence of a normal CPT transformation. 

A. CPT for Pair-Conjugate Dosons 

We choose 1111 real. The parity transformation is 

Pa,.{k)P-l = 11pai -k), 

Pbll(k)P-l = ijpbi -k), (6.1) 

P"PII(X, t)P-l = 11p"PlZ( -x, t), 

where ijp11p = 1. [In Eqs. (6.1) the symbol -k 
means (w, -k).] Time inversion is represented by an 
anti-unitary operator: 

Ta..(k)T-l = 11Ta..( -k), 

Tb..(k)T-l = ijTbi -k), (6.2) 

T"PIZ(x, t)T-l = 11T"Pix1 - t). 

18 See R. F. Streater and A. S. Wightman, peT, Spin and Sta­
tistics, and All That (W. A. Benjamin, Inc., New York, 1964). 
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TABLE I. The behavior of various pair-conjugate field operators under C, P, T, G = 
C exp (i1TTg), 0 = CPT, and e = GPT, is listed. The phase 11a is chosen as (-W-a. The ± 
signs indicate whether the indicated component of isospin T. changes under the transformation 

in question. 

aa(k) ba(k) 

C 'YJa'YJob-a(k) 'YJ-I1'YJoa'!.a(k) 
P 'YJpa l1(-k) rjpbl1( -k) 
T 'YJTai-k) iiTbl1 ( -k) 
0 'YJ11'YJ oPTb_l1(k) 'YJ11f}oPTa_ l1 (k) 
G 11obl1(k) ( -1)2T1ioal1 (k) 
e 'YJoP1,ba(k) ( -1)2Ti}oPTa,,(k) 

Combining these res.ults with the antiparticle conjuga­
tion results of Sec. 5 gives 

8aik)8-1 = 'Y/c'Y/P'Y/T'Y/l1b-,,(k), 

8bik)8-1 = iiijp1}T'Y/-l1a-ik), (6.3) 

8tpl1(x)8-1 = 'Y/c'YJP'YJTtp:( -x). 

Thus it is convenient to choose phases so that 

'YJc'YJP'Y/T = 1. (6.4) 

In our (standard) basis T2 is odd under time inversion. 
Hence 8 anticommutes with T and commutes with 
the rotation operator: 

8T + T8 = 0, 

8t>(A) = O(A)8. (6.5) 

Under GPT == 0, the state vectors or particle operators 
transform simply, but the field transformation law is 
more complicated: 

0aik)0-1 = bik), 

0bik)0-1 = (-1)2Taik), (6.6) 

0tp..(x)0-1 = (-I)T+l1tp~l1( -x), 

The anti linear character of 0 makes the GPT trans­
formation of T more complicated than for G alone. 

These and other pertinent results are collected in 
Table I. From (6.3) we see that 8 2 commutes with 
all operators and is a multiple of the identity. Defining 
the vacuum to be invariant under 8 gives 

8 2 = I. (6.7) 

However, 02 is exp (2i7rT2). 

It is clear that our definition (2.2) of the anti­
particle states J Toc) coincides exactly with the definition 

JToc) == 0 JToc), (6.8) 

except for the phase (_1)2T of (6.6), which occurs for 
half-integral isospin. 

One can easily check the compatibility of (6.8), (6.5), 
and the constructive proof of Sec. 2, in which the 

'P11(X) T, To T3 

rlo'P:(x) + 
'YJP'PI1( -x, t) + + + 
'YJT'PI1(X, -t) + + 
'YJOPT'P:( -x) 
( -l)T+I1'YJO'P!I1(x) + + + 
( -l)T+I1'YJOPT'P_I1(X) + + 

states JToc) and JToc) were shown to transform identi­
cally under O(A). 

It is of interest that the antiparticle states defined by 
CPT transform as the c.c. representation. This 
follows by applying 8 to Eq. (2.8), using Eq. (6.5): 

80(A) JToc) = ! 8(JT,B)Dpl1(A», 
p 

O(A)(8 JToc» = ! (8 JT,B»D;iA). 
p (6.9) 

The operator algebra is left invariant by 8 or 0. 
The energy density transforms as 

8Je(x)8-1 = Je( -x), (6.10) 

and the theory is 8 invariant. Note that 8 commutes 
with the isospin commutation relations, Eqs. (2.7). 

B. CPT for Self-Conjugate, Integral­
Isospin Bosons. 

This case is not very different from the foregoing. 
Letting 'YJ" = (-1)", we have 

Paik)P-l = 'YJpal1( -k), 

Prpix, t)P-l = 'YJp rpl1 ( -x, t), 

Tal1(k)T-l = 'YJTai -k), 

Trpix, t)T-l = 'YJTrpix, -t). 

(6.1la) 

(6. 11 b) 

(6. 11 c) 

(6.11d) 

(Here 'YJT is ± 1 because of the choice of real 'YJ11') 

Again choosing phases as in (6.4), we find that 

8aik)8-1 = (-I)l1a_ik), 

8rp..(x)8-1 = rp:( -x). (6.12) 

Actually, the requirement that Eq. (6. 11 a) give (6.11b) 
requires that 'YJp be real, and hence 'YJp = ± 1. 

Similarly, the transition from (6.1lc) to (6.1ld) 
requires that 'fJl' be related to 'YJ11 by 

(6.13) 

Thus 'YJ~ is i7!. Finally, 'YJ~ is unity. Hence the 
choice of real 'YJ11 forces 'YJbPT to unity. Hence 8 2 is 
unity: 

8 2rpl1(x)8-2 = (i7CPT)2rpl1(X) = rpl1(x). (6.14) 
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TABLE II. The behavior of various self-conjugate field operators under 
C, P, T, G = C exp (i1TT.), 0 = CPT, and 0 = GPT, is listed for the 

phase choice 1'/" = (-i)I«, A" = 1'/01'/". 1'/hT is (_1)1'1' for this choice. 

a,,(k) tp,,(x) Tl T .. Ta 

C ;''''Y/oa_,,(k) 'Y/otp:(x) + 
P 'Y/pll,,(-k) 'Y/ptp" ( -x, t) + + + 
T 'Y/~"<-k) 1'/1'tp,,(x, -t) + + 
0 ;1«'Y/oPTa_,,(k) 1'/oP'l'tp:( -x) 
G ;t.'l'1'/oa,,(k) I"1T+I<Z'Y/Otp!,,(x) + + + 
0 1"1'l'1'/op~,,(k) 1"1'l'+I«'Y/I]PTtp~( -x) + + 

Eq. (6.14) and its conjugate therefore lead again to equivalent to the identity. We find 
Eq. (6.7). 

The transformation properties are listed in Table II. 0 2a" + a,,02 = 0, 
The phases are written with factors of i so that they 02IP..(x) + IP..(x)02 = o. 
are also valid for half-integral isospin (with the second 
phase choice given below). We solve these equations by 

C. CPT for Self-Conjugate, Half­
Integral Isospin Bosons 

0 2 = (_I)N == exp(i7TN), 

where N is the number operator. 

(6.17) 

(6.18) 

P and T are defined as in Eq. (6.11). Again, 1'/~ is 
unity and 1'/T is related to 'YJ/I by Eq. (6.13). In Sec. SB 
we discussed charge conjugation with the phase 
choices 1'/" = (-I)T-", A." = 1'/o( _i)2", where rJ't; = 1. 
Note that this (real) 'YJ" requires 'YJ~ = I, so that 

1'/'t;PT = 1. (6.1S) 

Combining Eq. (S.4S) with (6.11) gives for CPT 

The factor i can be removed from the second of 
Eqs. (6.16) if we make 1'/" imaginary. The occurrence 
of i in the field operator for self-conjugate bosons 
may seem offensive. However, we are accustomed to 
the equivalence of self-conjugate theories to a collec­
tion of degenerate Hermitian fields. Such equivalence 
does not hold here. Although we find it convenient 
to have 1'/" real, the phase choice now presented permits 
a unified treatment of all self-conjugate bosons. We 
generalize (S.40) to 

A./I = (_i)2/1'YJc = 'YJce-i1T<Z, 'YJ~ = 1. (6.19) 0a/l(k)0-1 = i2"a_/l(k), 

0IP,,(x)0-1 = i2T IP:( -x). (6.16) 

Here we have chosen 1'/OPT to be + 1. Table III 
summarizes the transformations for this phase choice. 

Again, Eq. (S.38) is satisfied. We make CI" in Eq. 
(S.34) 1'/c by the choice 

1'//1 = (_i)2" = e-i
11<Z. (6.20) 

The interesting new feature of (6.16) is the appear­
ance of the purely imaginary factor i2T in the second 
equation. As a consequence of this, 0 2 no longer is 

For integral IX this reduces to the choice 'YJ« = (-1)« 
used for the integral isospin SCM. From (6.20) we 

TABLE III. The behavior of half-integral isospin self-conjugate field 
operators under C, P, T, G = C exp (i1TT.), 0 = CPT, and 0 = 
GPT, is listed for (real) 'Y/« = (-1)'1'-", A" = (_i)2"1'/. 1'/C~PT is +1 

for this phase choice. 

a,.(k) tp«(x) Tl Ta T. 

C 1"1«'T}.a-,.(k) 1"IT'T}.tp:(x) + 
P 'T}pll,,(-k) 'T}ptp,,( -x, t) + + + 
T 'T}~,,(-k) 1'/Ttpa.(X, -t) + + 
0 1"1«'T}oPTa_a.(k) 1"lT1'/OPTtp:( -x) 
G 1"IT'T}.a,.(k) 1"1«1'/.tp!,,(x) + + + 
0 1"1T1'/oPTaa.(k) 1"1«1'/oP'l'tp~,,( -x) + + 
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learn that summation of the series (A2) 

'YJ~ = 'YJ: = 'YJ&PT = -1 

Under C and 0 we find 

(6.21) U(O) == exp (iOA1), 

Ca«C-1 = j21Z'YJca_«, 

C C-l * fP« = 'YJcfP«, 

0a«0-1 = j2«'YJOPTa_a, 
(6.22) 

0fPix)0-1 = 'YJOPTfP:( -x). 

Since 'YJOPT is purely imaginary, we are again led to 
Eqs. (6.17)-(6.18). The transformation laws associ­
ated with this phase convention are given in Table II. 

The proof given by Kantor7 depends critically on the 
possibility of choosing 0 2 in the form (6.7). Repeating 
his argument for 0 2 = -1 (for one-particle states) 
yields exactly the criterion for half-integral isospin 
representations (see Ref. 14, p. 286). 
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APPENDIX A: EXPLICIT FORM FOR THE 
ANTIPARTICLE OPERATOR C FOR 

PAIR-CONJUGATE BOSONS 

To discover a unitary C such that 

C *C-l b* a« ='YJ« -«, 

(AI) 

we employ the identity 

• A,2 
eUBe-J.A = B + A[A, B] + - [A, [A, B]] + .... 

2 
(A2) 

We expect C to be of the form exp (iOA), A Hermitian. 
Since C2 = 1, 20A has eigenvalues 21Tn (n any 
integer). 

From the commutator series (A2) we are led to 
consider the following AI: 

Al = ! ('YJ«aik)b~ik) + ij«a:(k)b_ik». (A3) 
ka 

We thus obtain the following commutators: 

[AI, a:] = 'YJ«b~«, [AI, b:] = ij_«a~«, 

[AI, [AI' a:]] = a:, [AI, [AI, b:]] = b:. (A4) 

The closure exhibited in (A4) leads to a very simple 

U(O)a:U(O)-1 = a: ! (jOt 
n=O.2.4.···. n! 

* '" (iO)n +'YJ«b_« k 
n=I.3.5.···. n! 

(A5) 

The same calculation works for b:. We find 

U(O)a:U(O)-1 = cos Oa: + i sin O'YJ«b~«, 

U(O)b:U(O)-1 = i sin Oij_«a~« + cos Ob:. (A6) 

Defining the two-component object v by VI = a: , 
V2 = i'YJ«b~«, we see that (A6) has the form of a 
two-dimensional rotation 

U(O)VU(O)-1 = D(O)v; 

D(O) = ( c~s 0 sin 0). (A7) 
-sm 0 cos 0 

For 0 = 1Tj2, we have 

U(1Tj2)a:U(1Tj2)-1 = i'YJ«b~«, 
U( 1Tj2)b: U( 1Tj2)-1 = jij_«a~«. (A8) 

This is almost C except for the appearance of the 
factor of i. Such a phase is easy to transform away, 
however. 

Define the total number operator N by 

N = ! (a:(k)aik) + b:(k)b«(k», 
k« 

[N, a:] = a:, [N, b:] = b:. (A9) 

The transformation 0(0) 

0(0) == exp (iON) (AlO) 

advances the phase of a: or b: by 0, as follows from 
(A2) and (AlO): 

0(0){:;}0-1(0) = ei6
{:;}. (All) 

Thus we may define C by 

C = 0 ( - ~) U (~) = exp ( - i ~ N) exp (i ~ A} 

(A12) 

A short calculation verifies that [N, AI] vanishes, as 
may be surmised from the definition of A, Eq. (A3). 
Thus we may combine exponentials in (A12), giving 

C = exp [i ~(Al - N)] 
= exp [-j!!.! (a: -'YJlZb~«)(a« - ij«b_«)]. (A13) 

2 k« 
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C can be regarded as a finite transformation of the 
continuous Lie group C9 : 

C9 = exp (i03), 3 = Al - N. (AI4) 

There is an interesting correspondence between the 
finite transformation C and the infinitesimal genera­
tors AI, (or 3). This is only the usual one which 
obtains when we have a continuous group, but the 
nature of the algebra is interesting. 

Consider the transformations 

(AI5) 

[A,A] = O. 

Of course it is iA that is the infinitesimal generator of 
U(O). Making the identifications 

we find the algebra 

m=A, 

* n = a .. , 

1 = 'fJab~a' 

[m, n] = I, 

[m, /] = n, 

[I, n] = O. 

(AI6) 

(A17) 

In contrast, the algebra of the 3, a:, 'fJllb~a is some­
what more intricate. With 3 = m', a: = n', 'YJab~1l = 
1', we find 

[m', n'] = /' - n', 

[m', /'] = n' - l', 

[/', n'] = O. 

(AI8) 

As a consequence of (AI8), l' + n' commutes with m'. 
The quantity l' - n' is exactly what occurs in the 
exponential (A13); with 

* b* C Il = all - 'YJ1l -a' 

I. Phase Change of all 

Consider the operator 

0(0) = exp (iON), 

N = L a:a .. , (Bl) 

where 0 is real. Using the commutator expansion 
(A2), we find 

(B2) 

II. Change of Phase which Depends on at 

Let ~a be real and of unit magnitude [for example 
the function (_I)T-a], 

~: = 1. (B3) 

Define the Hermitian operator Al and the unitary 
generator Ul by 

Ul(O) = exp (iOAl ), 

From the commutation rules 

[AI, a:] = ~aa:, 
[AI, [AI, a:]] = a:, 

etc., we find the result 

eiBA'a * e-i9A
, = cos (}a * + i z, sin Oa * Gt II I5cz a: 

This includes (B2) as a special case. 
For 0 = 1T/2 (B6) reduces to 

(B4) 

(B5) 

(B6) 

Ul (1T/2)a:Ul (1T/2)-1 = i~lla:. (B7) 

We may remove the phase i by applying (B2) , with 
() = -1T/2. Since Al commutes with N, 

Va:V- I = ~aa:, 

v = o( -~) Ul(~) = exp [i; (AI - N)} (B8) 

we have 

C9 = exp ( - iO * C:(k)Ca(k»). 

Finally, the most general transformation needed in 
(AI9) this paper, 

Note the identity Wa:W-l = 'fJaa:, 'fJa = U Il , ~ = eiw
, (B9) 

3 = [3, a:]*[3, IX:]. (A20) is given by the operator 

APPENDIX B: OPERATOR TRANSFORMA­
TIONS OF THE SC PARTICLE OPERATORS 

We give some expressions useful for the discussion 
of antiparticle conjugation given in Sec. 5. We 
consider a single momentum state k, suppressing the 
label k in our equations. 

III. Inversion of Sign of (I 

The general transformation 

C *C-l * aa = 'fJaa-I1. 

(BIO) 

(Bll) 
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can be built from Wof (BlO) and an operator Co: 

C ·C-l • oa.. 0 = a--«, 

(B12) 

The Hermitian operator A2 , 

A2 =! a:a_ .. , (B13) .. 
obeys the commutation rules 

[A2' a:1 = a~ .. , 
(B14) 

etc., so that the continuous transformation 

U2(0) = exp (iOA2) 

gives the following transformation: 

(B15) 

U2(0)a:U2(Orl = a: cos 0 + i sin Oa~... (B16) 

Setting 0 = 7T/2 and removing the factor i, as in 
Eq. (BB), gives for Co 

Co = exp [i; (A2 - N)] 
= exp [i; ~ a:(a_ .. - a .. ) 1 (B17) 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 6 JUNE 1968 

Nonequllibrium Statistical Mechanics of Open Systems 
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A theoretical framework for the nonequilibrium statistical mechanics of open systems is constructed. 
This is concerned with a formulation of a generalized master equation governing the evolution of an 
arbitrary system S in interaction with a "large" reservoir R. The dynamics of S are analyzed on the basis 
of a precise quantum-mechanical treatment of the microscopic equations of motion for the combined 
system S + R. On proceeding to the thermodynamical limit for R we obtain a generalized master 
equation for S, subject to specified conditions on the many-particle structure of R, its initial state, and 
its coupling to S. This master equation corresponds to a self-contained law of motion for S, in which the R 
variables appear only in the forms of certain thermal averages, taken over the initial state. This dynamical 
law is a generalization of the quantum-mechanical Liouville equation to a form appropriate to open 
systems. 

1. INTRODUCTION 
A considerable body of research in nonequilibrium 

statistical mechanics has been founded on treatments 
(see, for instance, Refs. 1-4 and papers quoted there) 
of the microscopic equations of motion for closed 
systems, without recourse to statistical assumptions 
concerning the actual dynamics of the systems­
the most familiar assumption of this type is 
Boltzmann's stosszahlansatz. In these aforementioned 
treatments, the only statistical assumptions made 
are ones that concern the initial states of the systems. 
The treatments, therefore, have the merit of being 
manifestly consistent with the dynamical laws of 
microphysics, whether classical or quanta!. 

The object of the present paper is to provide a 
formal framework for the non equilibrium statistical 
mechanics of open systems, based likewise on a 
systematic treatment of their microscopic equations 
of motion, together with a statistical assumption 
concerning their initial states. Here we refer to a 
system S as being "open" if it is coupled to an 
appropriately "large" system R, which we shall term 
a "reservoir," and whose properties will be further 
specified in Secs. 2 and 3. Our definition of an open 
system is designed to be sufficiently general to cover 
not only the cases where S is a system placed in some 
thermostat, say, but also the cases where S is part of 
a much larger system, the remainder of which is 

• Permanent Address: Department of Physics, Queen Mary 
College, London, England. 

1 L. van Hove, Physica 23, 441 (\957); E. W. Montroll, Funda­
mental Problems in Statistical Mechanics, E. O. D. Cohen, Ed. 
(North-Holland Publishing Company, Amsterdam, 1962), pp. 
230-249; I. Prigogine, Non-Equilibrium Statistical Mechanics (John 
Wiley & Sons, New York, 1962); A. Janner, Helv. Phys. Acta 35, 
47 (1962); 36, 155 (1963); O. L. Sewell, Physica 31, 1520 (1965). 

I R. Zwanzig, Physica 30, 1109 (1964). 
• O. Emch, Helv. Phys. Acta 37, 532 (\964); and in Lectures in 

Theoretical Physics, Summer Institute for Theoretical Physics, 1965, 
W. E. Brittin, Ed. (University of Colorado Press, 1966), pp. 65-99. 

'0. L. Sewell, Physica 34, 493 (1967). 

identified with the reservoir R. An example of the 
latter cases is one where S is the assembly of conduc­
tion electrons and R is the phonon system in a 
semiconductor. It is evident that most systems of 
interest to physicists are "open" in the sense we have 
specified: In some cases one might expect R to exert a 
crucial influence; in others, a trivial one, on the 
behavior of s_ 

Our approach to the theory of open systems will 
be to extract the dynamical laws governing S from the 
microscopic equations of motion for the closed 
systems comprising Rand S. This kind of approach 
has been used by a number of authors in more limited 
contexts. For example, somes have extracted dynam­
ical laws for S in cases where the microscopic equa­
tions of motion for the compound system R + S 
were exactly soluble, while others6 have done likewise 
in cases where R was postulated to have especially 
simple microscopic properties that justified a stoss­
zahlansatz. The present theory, on the other hand, 
is designed to be both general and free from any 
stosszahlansatz or equivalent assumption. 

We shall be concerned with a description of the 
dynamics of S in the following situation. The reservoir 
R and the system S are initially prepared independently 
of one another, the preparation of R being effected by 
measurement of a set ~ R of macroscopic variables, 
which are constants of the motion when R is isolated. 
The two systems are then coupled together so that 
the evolution of S is partially governed by its inter­
action with R. 

• P. C. Hemmer, Ph.D. thesis, Trondheim, 1959; R. J. Rubin 
J. Math. Phys. 1, 309 (1960); R. E. Turner, Physica 16, 269 (1960); 
P. Mazur and E. Braun, Physica 30,1973 (1964); E. Braun, Physica 
33, 528 (1967); P. Ullersma, Physica 32, 27 (1966); 32, 56 (1966); 
31,74 (1966); 31, 90 (1966). 

6 P. O. Bergmann and J. L. Lebowitz, Phys. Rev. 99,578 (1955); 
J. L. Lebowitz and P. O. Bergmann, Ann. Phys. 1, 1 (1957); 
C. R. Willis and P. O. Bergmann, Phys. Rev. 128, 391 (1962). 
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Our investigation of the dynamics of S is based on 
an extension of methods we3.4 have previously 
developed for closed systems. This investigation 
starts from the quantum-mechanical Liouville equa­
tion for the full system comprising Sand R; and 
proceeds from this starting point in two principal 
steps. The first step is to derive an exact generalized 
master equation for the evolution of the reduced 
statistical operator governing all the S observables 
and the macroscopic variables :E R' This is achieved 
by means of an extension of the mathematically 
rigorous projective techniques2

•
3 which were first used 

to derive exact generalized master equations for 
macroscopic observables of closed systems. In both 
this earlier case and in the present one, the derivation 
of the master equation rests only on general principles 
of quantum mechanics, together with statistical 
assumptions on the initial state. 

The second step is to reduce this master equation 
to one governing the evolution of S only. This reduc­
tion is based on assumptions of a general character 
concerning the many-particle structure of R and the 
form of its coupling to S. Further, the reduction is 
effected in the thermodynamical limit for R; i.e., in 
the'limit where the number of particles N and the 
volume of R both tend to infinity, the particle density 
of the reservoir remaining finite. 

The resultant master equation constitutes a self­
contained dynamical law for S in which the R 
variables appear only in the forms of averages taken 
over the initial state. This equation represents a 
generalization of the quantum-mechanical Liouville 
equation to a form that is appropriate to open systems. 
In general, the equation is non-Markoviap. Questions 
concerning its reduction to a Markovian form are 
not considered in this paper. 

The essential factor which permits the reduction of 
the master equation to a self-contained law for S is 
that, in consequence of our assumptions, it is found 
that the reservoir exerts its influence on S only via 
its intensive properties. Now, although the extensive 
variables :ER may change by a finite amount as a 
result of the R-S coupling, the intensive variables 
:E R/ N become constants of the motion in the thermo­
dynamical limit. Consequently the law governing the 
evolution of S contains nothing of the time dependence 
of :ER , which means that S follows a self-contained 
dynamical law. It may be seen that the factors 
governing the existence of such a law for S are very 
similar to those we invoked in an earlier paper4 for 
the purpose of deriving self-contained macroscopic 
laws for a closed system. 

We set out the theory as follows: In Sec. 2 we 

f&rmulate our mathematical representation of the 
states and observables for the combined system 
S + R. This representation is chosen so as to enable 
us to rigorously derive a master equation governing 
S and the macro-observables :E R' (The necessity for 
rigor here is brought out in discussions in Secs. 4 and 
5.) Having derived this equation, we anticipate 
results that are obtained in Sec. 3 and employ them 
to reduce the master equation to one that governs 
the evolution of S only. 

In Sec. 3 we derive the above-mentioned results, in 
the thermodynamic limit, subject to specified assump­
tions concerning the many-particle structure of R, 
the form of its coupling to S, and its initial state. 

In Sec. 4 we make further use of these results in 
order to simplify the master equation to a form that 
should be more tractable for future use. 

In Sec. 5 we summarize our conclusions. 

2. GENERALIZED MASTER EQUATION FOR A 
SYSTEM INTERACTING WITH A RESERVOIR 

We consider the evolution of the states of a quantum 
system, referred to as the system of interest (S), 
interacting with a "large" quantum system, referred 
to as the reservoir (R). For notational convenience the 
latter is essentially an energy reservoir, but the 
formalism is built in such a way as to allow R to be a 
reservoir for all other quantities which might be 
needed to complete its macroscopic description. As 
will become clear in the sequel, the reservoir will 
be devised in such a way that only its intensive variables 
will affect the evolution of the system S. The com­
pound formed by the system S interacting with the 
reservoir R is referred to as the total system (S + R). 

Throughout this paper we intend to use the projector 
techniques in Liouville space which by now have been 
used by numerous authors, for example Refs. 2, 3,7,8. 
For the sake of self-completeness of this paper, we 
first recall briefly the main facts of this mathematical 
formalism. We then present with somewhat more 
details the generalization required for our problem 
and the specific properties pertaining to the case 
under consideration. 

When dealing with a quantum system, it is cus­
tomary to represent pure states and observables, 
respectively, as vectors of a Hilbert space ~, and as 
Hermitian operators acting on ~. Mixed states (as 

'B. Robertson, Ph~s. Rev. 144, 151 (1966); 153, 391 (1967); 
P. N. Argyres, e.g., 10 Lectures in Theoretical Physics, Summer 
Institute for Theoretical Physics, 1965, W. E. Brittin, Ed. (University of 
Colorado Press, 1966), pp. 183-238. 

8 G. Ludwig, in Ergodic Theories, P. Caldirola, Ed. (Academic 
Press Inc., New York, 1961), pp. 57-132; U. Fano, in The Many­
Body Problem, E. R. Caianiello, Ed. (Academic Press Inc., New 
York, 1964), Vol. 2, pp. 217-239. 
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"mixtures") are then represented as certain operators, 
referred to as density matrices. The latter are the 
states with which statistical mechanics is concerned. In 
dynamical problems, for instance, one has to consider 
operations which map the manifold of the density 
matrices onto itself. Coarse-graining is also formu­
lated in terms of operations on mixed states. In the 
primitive stage of the theory, this led to the intro­
duction of a somewhat cumbersome "tetradics" 
notation2 for the purpose of representing such things 
as the quantum analog of the classical Liouville 
operator. It was considered, however, that it would 
be useful for quantum-statistical purposes to have a 
formalism in which every state, whether pure or 
mixed, would be represented as a vector in some 
appropriate Hilbert space on which the Liouville 
operator and the coarse-graining operator would act. 
The Liouville space formalism precisely provides such 
a framework. One associates with il the set .2 of all 
Hilbert-Schmidt operators mapping il onto itself: 

.2 == {A EB(il) I Tr (A*A) < oo} == .2(il) , (2.1) 

equipped with the scalar product 

(A, B) == Tr (A * B) defined for all A, B E.2. (2.2) 

This l;Iilbert space .2 is the so-called Liouville space. 
Let {vt} be the unitary group describing in il the 
evolution of the pure states 

1p(t) = vt1p(O). (2.3) 

One can associate with V t the operator Ut , defined by 

utA = VtAV- t • (2.4) 

Neuman equation 

i.!! pet) = Cp(t) == [H, p(t)]_, 
dt 

(2.10) 

which then appears as the exact quantum analog of 
the classical Liouville equation with the commutator 
replaced by the Poisson bracket (P.B.) 

i :/(t) = Lf(t) = i{H,f(t)}p.B., (2.11) 

where f is the classical distribution function. 
Let Sand R be two quantum mechanical systems, 

as described above. Let ils and ilR be the Hilbert 
spaces of their respective pure states, and let us 
denote the corresponding Liouville spaces by .2s 
and .2R . The quantum-mechanical description of the 
total system S + R is usually given in terms of 
operators acting in the Hilbert space il, defined as 
the direct product of ilR and ils: 

il = ilR ® ils · (2.12) 

For our statistical purposes, it is more convenient to 
formulate the properties of the total system S + R 
in terms of the Liouville space 

(2.13) 

Since there are several almost equivalent ways to 
define the direct product of Hilbert spaces, it is perhaps 
not useless to prevent possible misunderstandings by 
stating here what we actually mean. Let il(1) and il(2) 
be two Hilbert spaces. To each pair of vectors 1p(1) in 
il(1) and 1p(2) in il(2) we associate the operator 

(2.14) Thus, the unitary group {~t} governs the evolution 
of the mixed states defined by 

pet) = Utp(O). (2.5) 

In the same way as the Hamiltonian H is the gener­
ator of {vt}, i.e., 

V t = exp (-iHt), (2.6) 

the Liouville operator C is the generator of {U t
}, i.e., 

U t = exp (-iCt). (2.7) 

Thus, by (2.4)-(2.7), 

Cp = [H, p], 

so that the Schrodinger equation for pure states 

i.!! 1p(t) = H1p(t) 
dt 

(2.8) 

(2.9) 

is replaced for mixtures by an equation of the same 
form, but in Liouville space. This is simply the von 

(2.15) 

We then consider the vector space il(O) spanned by 
all the operators so obtained when 1p(1) and 1p(2), 
respectively, run over il(1) and il(2). We equip this 
vector space il(O) with the scalar product 

(1p(l) ® 1p(2), cp(1) ® cp(2») = (1pm, CP(l))l (1p(2), cp(2»)2' 

(2.16) 

We then add to il(O) its limit points to get il = 
il(1) ® il(2). 

We further notice, for consistency, that, with this 
definition of direct product, 

.2(ilR ® ils ) = .2(ilR) ® .2(ils ). (2.17) 

We now present the so-called "projector technique 
in Liouville space" in the form most suited to the 
aims of the present paper. In its broadest sense, this 
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technique is devised so as to systematically extract 
the information pertinent to the variables under 
consideration from the complicated microscopic 
dynamics of the complete system. In the present paper 
the variables under consideration are, on one hand, 
the complete set of observables for S and, on the other 
hand, a set of macroscopic observables for R. The 
latter observables are idealized3,g as forming a set ~R 
of intercommuting self-adjoint operators {A R}, acting 
on the Hilbert space .bR pertinent to the proper 
microscopic description of R. Each set {A(E)} of 
simultaneous eigenvalues of these observables deter­
mines a subspace ~E of .bR; the projector from .bR 
to this subspace .bE will be denoted by DE' We 
notice in passing that .bE plays in quantum statistics 
exactly the role of the familiar macroscopic cell of 
classical statistics. We will, therefore, designate .bE 
by the same name. In this idealization we have then 
that each macroscopic observable AR takes the form 

(2.18) 

We denote by WE the dimension «00) of ~E' We 
have then: 

TrRDE = WE' 1 
DEDE, = DE~EE" 

* ~l~ DE=DE , 

1 DE = IR (the identity operator on ~R)' 
E 

We now define a coarse-graining operator :l'R' acting 
on i!R' as follows: 

:l'RBR = 1 <BR)EDE , forallBRini!R, (2.20) 
E 

with 

(BR)E = TrR (BRF E)' 

where FE' defined as 

FE = DE/WE' 

(2.21) 

(2.22) 

is the density matrix which corresponds to the uniform 
distribution throughout the cell .bE' The physical 
meaning of:l' R is that it coarse-grains (see Ref. 3) the 
elements of i!R' Since, moreover, it satisfies the 
equation 

(I' _ (1'* _ (1'2 
oJR-OJR-OJR' (2.23) 

we refer to it as the coarse-graining projector. We have, 
in particular, for every density PR in i!R' 

(2.24) 

where 

(2.25) 

tN. O. van Kampen, Physica 10, 603 (1954). 

We can interpret PE as the probability that the cell 
i)E is occupied when the system R is in state PR' We 
have indeed, for any macroscopic observable AR 
and any state P R, 

(AR)p, = Z PEA (E), (2.26) 
E 

so that we can rephrase our statement concerning the 
meaning of PE by saying that it is the probability that 
the macroscopic observable A R takes the value A(E) 
when the system R is in the state P R . 

Let us now come back to our total system (S + R). 
We suppose that we follow the evolution of the total 
system (S + R) via two sets of observables, respec­
tively, attached to S and to R. We do not want, for 
the moment, to impose any restriction whatsoever 
on the observables relative to S, which we choose to 
measure. The observables on R will be chosen to be 
the above-described set ~ R • The conditions of 
observation just described lead to the definition of a 
new coarse-graining projector :I' for the total system 
(S + R). namely 

:I' = :l'R 0 Js , (where Js is the identity 

operator acting on i!s). (2.27) 

The reader will convince himself immediately that :I' 
is indeed a projector acting on the Hilbert space 
i! = ,eR 0 ,es' 

We have, in particular, for any BR in i!R and Bs 
in i!s: 

:I'(BR ® Bs) = Z (BR)EB~, (2.28) 
E 

with 

and 
(BR)E = TrR(BRFE), (2.29) 

B~ = DE 0Bs , (2.30) 

(We notice, in passing, that this formula, extended 
by linearity and continuity over the whole of ,e, 
precisely defines :1'.) 

For notational convenience in the sequel, we now 
want to introduce the following operators: 

B~ = BR 0 Is, (2.31) 

B~ = IR ® Bs. . (2.32) 

(Notice, however, that neither B~ nor B~ belong to i! 
in the general case where, respectively, i)R or .bs are 
infinite-dimensional.) We further define the operator 

(2.33) 
by 

("P(S),TrR Bq:}S» = z("PlR) ® "P(S). B"P~R) ® cp(S», 

i (2.34) 
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for any operator B acting on bR @ bs, such that the 
right-hand side exists (and is finite) for all 1p(S) and 
qJIS) in bs , and is independent of the chosen 
basis {W!Rl} in b R . We notice in particular that 
TrR (BR @ Bs) is defined in the above sense whenever 
Bs is bounded on bs and BR has a finite trace. We 
have then the property 

TrR (BR @ Bs) = (TrR BR)Bs. (2.35) 

Using the notation just introduced, we can rewrite 
explicitly the action of ~ on any element of .e as 

~A = 1 DE @ TrR (Fi;A) (2.36) 
E 

or, for the states we consider, 

~p=1FE@TrR(D~p). (2.37) 
E 

We notice at this point that this formula allows us 
to extend ~ somewhat outside of .e. In particular we 
have, for any observable As on S and macroscopic 
observable AR = 1E A(E)DE on R: 

~A~ = A~, 
~A~ = A~, (2.38) 

~(AR @As) = AR ® As· 

There properties justify our use of ~ in the sense that, 
when computing the expectation values of "relevant" 
observables (namely, any observable As on S, any 
macroscopic observable A R on R, and their combina­
tions), we can replace p by ~ p. In other words, ~ 
extracts from any state p of the total system (S + R) 
the information relevant for our purpose, namely ~ p. 

Using now the projector technique pioneered by 
Zwanzig2 and exploited subsequently by several 
authors, we can derive a master equation for ~ pet), 
our quantity of interest. 

To obtain this equation we just have to generalize 
slightly the procedure used in Ref. 3. This generaliza­
tion takes, account of the fact that our present pro­
jector ~ differs from that used earlier in that now 
~C~ :r!i O. We first Laplace-transform the trivial 
operator equation 

i !let) = - i!:!l(t) (2.39). 
dt 

into 
z:R,(z) - 1 = -iC:R,(z), (2.40) 

where :R,(z) is the resolvant (z + i£:)-1 of U(t) = 
exp (-iCt). We multiply Eq. (2.40) from the left by 
~ to get 

'~(z:R,(z) - 1] = -i~C:R,(z), 
i.e., 
~[z:R,(z) - J] = -i~C~:R,(z) - i~£:(J - ~):R,(z). (2.41) 

If we multiply Eq. (2.40) from the left by (I - ~) we 
get 

(I - ~)[z:R,(z) - 1] = -i(1 - ~)C:R,(z), 

which we can rewrite as 

z(1 - ~):R,(z) = (1 - ~) - i(J - ~)C:R,(z). (2.42) 

On adding i{l - ~)£:(I - ~):R,(z) to both sides, we 
obtain 

[z + i(I - ~)£:(I - ~)](I - ~):R,(z) 

= (I - ~) - i(I - ~)C~:R,(z), (2.43) 
so that 

(J - ~):R,(z) = (I - ~)S(z) 

x [(I - ~) - i(I - ~)C~:R,(z)], (2.44) 

where S(z) is the resolvant of 

'tJ/(t) = exp [-i(I - ~)C(I - ~)t]. (2.45) 

We can now replace (I - ~):R,(z) in the second term 
of the right-hand side of Eq. (2.41) by Eq. (2.44) and 
thereby obtain 

~[z:R,(z) - 1] + i~C~:R,(z) 
+ i~CS(z)(I - ~) 

+ ~£:(I - ~)S(z)(J - ~)C~:R,(z) = O. 

(2.46) 

We now operate on p(O) with the inverse Laplace 
transform of Eq. (2.46). Thus 

!i ~p(t) + i~C~p(t) 
dt 

+ i~C'tJ/(t)(1 - ~)p(O) 

+ fdt/~£:(I - ~)'tJ/(t - t')(1 - ~)C~p(t') = 0, 

(2.47) 

where 'tJ/(t) has been defined in Eq. (2.45). 
It is worth remarking here that the master equation 

(2.47) follows as an exact consequence of the micro­
scopic dynamics of our total system (S + R). It does 
not contain any statistical assumption. We will now 
introduce two assumptions, of statistical nature, 
concerning the initial state of the total system. We 
first assume that the systems Rand S are initially 
independent of one another. Thus 

p(O) = PR(O) @ O's(O). (2.48) 

Secondly, we assume that the initial state of the 
system R is obtained by measurement of the set of 
macroscopic observables {A R }. Hence,s 

PR(O) = I PE(O)F E, (2.49) 
E 
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and, consequently, 

p(o) = ~ PE(O)F E @ O's(O). (2.50) 
E 

We have then 

~ p(O) = p(O), i.e., (I - ~)p(O) = 0, (2.51) 

which implies that the third term of our master 
equation vanishes. 

The resultant master equation is then formally 
similar to the coarse-grained master equation obtained 
previously3 for a closed system. There is, however, 
one significant difference. This is that, whereas the 
term ~L~ pet) vanished in the latter case, it is generally 
nonzero for the case under consideration here. We 
discuss later the physical meaning of the new term. 
Let it suffice for the moment to trace back its mathe­
matical origin to the new definition we adopted in this 
paper for the coarse-graining operator appropriate to 
the discussion of a system interacting with a reservoir. 
We want to emphasize that, in spite of the fact that this 
change in the definition of the projector ~ does not 
affect the form of the kernel of the master equation, 
the new equation describes a very different physical 
situation and hence, therefore, a significantly different 
explicit structure. 

Some simplifications occur in the above master 
equation when the structure of the Hamiltonian is 
specified further. We now suppose that the Hamil­
tonian of the total system (S + R) splits into three 
parts: 

where 

and 

H = H ji + H~ + HI' 

Hji=HR®ls, 

H~ = IR®Hs , 

(2.52) 

(2.53) 

(2.54) 

HI = r dx r dy Vex, y)J R(x) @ J s(y). (2.55) 
JOR Jos 

Here, Hs and HR are the Hamiltonians for Sand R, 
respectively, when these two systems are decoupled 
from one another; HI is the interaction between these 
two systems; x and yare, respectively, configuration 
coordinates for Rand S; OR and Os are the volumes 
occupied, respectively, by Rand S; JR(x) and Js(y) 
are operators acting, respectively, on ~R and ~s. 
These operators represent intensive variables such as, 
for instance, particle number or current densities in 
second quantized formalism. The function Vex, y) 
is a c number and is suitably short-ranged in the 
difference of its arguments. Thus, our prescription 
for HI includes the usual case of static two-body 
interaction between particles of Rand S. More 

generally, J Rand J s might be functions of the creation 
and annihilation operators for the particles in the 
reservoir and in the system. The arguments carried 
over in this paper apply trivially to the simpler cases, 
where HI reduces to 

H I = VR@VS· 

(We do not make this latter simplifying assumption 
in the sequel.) 

Let L R, LS ' and L I be the Liouville operators 
(acting on E) corresponding to Hji, H~, and HI. 
Then it follows from Eqs. (2.53) and (2.54) that 

LR = LW) ® Js 
and 

LS = JR @ L~S), (2.56) 

where LkR) , L~S) are the Liouville operators in ER , 

Es , respectively, that correspond to the Hamiltonians 
HR , Hs; and JR, Js are the identity operators for 
ER , Es. It will be henceforth assumed that the 
macroscopic observables {A R }, and therefore the 
projection operators DE, are constants of the motion 
for R when it is decoupled from S. Hence, by Eqs. 
(2.28)-(2.31) and Eq. (2.56) 

LRD~ = 0, 
and 

LR~ = ~LR = 0. (2.57) 

It also follows from Eqs. (2.27) and (2.56) that 

~LS = LS~. (2.58) 

Hence, writing ~ pet) as 

~ pet) = Pl(t), (2.59) 

we see that, in view of Eqs. (2.57)-(2.59), the master 
equation (2.47) reduces to 

!!.. pit) + i(Ls + ~LI~)Pl(t) 
dt 

+ Idt'~CI(1 - ~)'D/(t - t')(1 - ~)LI~Pl(t') = 0, 

(2.60) 
where 'D'(t) takes now the simpler form: 

with 
'D/(t) = exp {-i(L~ + Li)t}, (2.61) 

(2.62) 
and 

(2.63) 
L~ and L~ are obviously Hermitian. We can then 
develop Eq. (2.61) in the usual perturbation theorylO 

<Xl 

'D/(t) = ~ 'U'~(t), (2.64) 
n-O 

10 M. L. Goldberger and K. M. Watson, Collision Theory 
(John Wiley & Sons, Inc., New York, 1964), Sec. 2.5. 
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with 

'lY~(t) = exp {-i~t} (2.65) 
and 

'lY~(t) = -ifdt''lY~(t - t')Ll'lY~_l(t'), for n > o. 
(2.66) 

As it is well known, this series can be rewritten as a 
time-ordered product 

where 

'lY'(t) = 'lY~(t)T exp {-i fdt'LJ(t')}, (2.67) 

LXt) = 'lY~( -t)LI'lY~(t). (2.68) 

We can express 'lY'(t) and I:~(t) in more suitable forms 
by using the properties already observed for our 
Liouville operators. We first notice that since the 
three operators LR' LS ' and ~ intercommute, the 
two terms in L~ also commute with one another. 
Consequently, by Eqs. (2.62) and (2.65), 

'lY~(t) = exp {-iLRt} exp {-iLst}, (2.69) 
with 

LS = (I - ~)Ls(I - ~). (2.70) 

Moreover, the second factor in (2.69) can be rewritten 
as 

exp {-iLst} = (I - ~)('lYs(t) - I) + I, (2.71) 

where 

with 
'lY~S)(t) = exp {-ieW)t}. (2.72) 

Using Eqs. (2.58), (2.71), and (2.72), we can now 
rewrite Eq. (2.69) as 

'lY~(t) = ~ + (I - ~)'lYo(t)(I - ~), (2.73) 
with 

'lYo(t) = exp [-i(LR + LS)t], (2.74) 

which obviously commutes with (I - ~), a property 
we shall use shortly hereafter. 

Using Eqs. (2.68), (2.73), and (2.74), we obtain 

LI(t) = (I - ~)Lrtt)(I - n (2.75) 
with 

Ll(t) = CU'o( -t)LlCU'o(t). (2.76) 

Let us now define: 

'\1(t) =: T exp {-i fdt'(I - ~)Ll(t')(I - ~)}, (2.77) 

which also commutes with (I - ~). We have then, by 
Eqs. (2.67), (2.73), (2.75), and (2.77), 

(I - !/')CU"(t)(I - !/') = CU'o(t)(I - !/')CU'(t), (2.78) 

so that in view of Eqs. (2.57), (2.72), (2.74), and (2.76), 

we can rewrite our master equation (2.60) as 

E:.- Pl(t) + i(Ls + ~1~)Pl(t) + tdt':K,(t - t')Pl(t') = 0, 
~ 1 

(2.79) 

where the kernel :K, is the following operator on .e: 
:K,(t) = ~CU' S(t)Lrtt)(I - ~)CU'(t)Ll~. (2.80) 

We want to emphasize here that this master equa­
tion is an exact consequence of the microscopic 
dynamics of the total system (S + R), under the 
assumption that the initial state of (S + R) satisfies 
Eq. (2.51). In particular, we have not yet assumed any 
special properties that serve to characterize the 
reservoir R. 

We now anticipate some results concerning the 
operators ~Ll~ and :K,(t) that will be shown in Sec. 3 
to follow from assumptions of a general nature that 
serve to characterize the reservoir. These results will 
be stated here in order to enable us to present an 
uninterrupted derivation of a self-contained master 
equation for the open system S. 

The results are: 

(a) ~p(t) = PR(O) ® O's(t), 
with 

O's(t) = TrR {U(t)PR(O) ® O's(O)}; (2.81) 

(b) I PE(O)(VR(Y»EF E = (VR(Y»OPR(O), 
E 

where 

with 

VR(y) = r dxV(x, y)J R(X). 
JOR 

We now want to analyze the implications of these 
properties on the second term of the left-hand side 
of our master equation. We first notice that for any 
BR in .eR and any Bs in .es , we have 

LrtBR ® Bs) 

= r dx r dyV(x, y){JR(x)BR ® [Js(y), BsL JOR Jos 
+ [JR(x), BRL ® BsJs(Y)} (2.83) 

and thus 

~rtBR ® Bs) 

= r dx r dyV(x, y){~ R(J R(x)BR) ® [J s(y) , Bs]­JOR Jos 
+ ~ R[J R(X), BRL ® BsJ s(y)}· (2.84) 

The second term in the latter integrand vanishes if we 
specify that B R is a macroscopic observable A R on the 
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reservoir. For such BR we have, moreover, 

;I' R(J R(x)AR) = L AR(E)(J R(x»EDE . (2.85) 
E 

Using Eqs. (2.81), (2.82), (2.84), and (2.85), we obtain 

;I'C[;I'Pl(t) = PR(O) ® cjS)O's(t), (2.86) 
with 

where 

(2.88) 

Consequently, by Eqs. (2.56), (2.81), (2.86), and 
(2.87), we can then write our master equation (2.79) 
as 

PR(O) ® (:t + iC~1;) O's(t) 

= -ltdt'J(,(t - t')PR(O) ® O's(t'), (2.89) 

with 
(S) (S) (S) - [H V] 

£.eU=CS +£.[ = s+ S'-' (2.90) 

Taking now the trace over R of both sides of Eq. 
(2.89), we get the following reduced master equation 
for O's(t): 

(~ + iC~7i)0'.(t) = - Ltdt'J(,(S)(t - nO'.(t'), (2.91) 

where the reduced kernel K(S), acting on 1!s, is defined 
by 

J(,(S)(t)A s = TrR {J(,(t)PR(O) ® As} (2.92) 

and hence depends in a crucial way on the state PR(O) 
of the reservoir R. It may be seen that the term ;I'm P 
of the full master equation (2.47) has given rise to the 
term C~W in the reduced master equation. In view of 
Eq. (2.90), this latter term corresponds to the rate 
of change of as for a conservative system with 
Hamiltonian Hs + Vs. This means that, if the master 
equation (2.91) represents a dissipative law for as, 
in the sense that it leads to an irreversible approach 
of as to an equilibrium value, then the dissipation 
can only arise from the convolutionary term on the 
right-hand side of the equation. We shall not pursue 
here the problem of obtaining conditions under which 
the interaction of S with R leads to a dissipative law 
for as. 

Equation (2.89) is the simplified master equation 
which we aimed to derive. As will be shown in Sec. 
4, this equation can still be significantly simplified if 
one takes into account more of the macroscopic 
character of our problem. We note here that the 
equation constitutes a generalization to open systems 

of the von Neuman equation for closed systems S: 

(:t + iCW)) O's(t) = O. 

It is immediately seen that our equation differs 
from von Neuman's in two aspects. First, the free 
Liouville operator CkS ) appearing in von Neuman's 
equation has been replaced in ours by an effective 
system-Liouville operator C~·W which includes part of 
the effect of the interaction C[. Secondly, the zero 
right-hand side of von Neuman's equation has been 
replaced by a complicated term, reminiscent in its form 
of the term appearing in the generalized master 
equation for a closed system. This formal analogy 
might, however, be misleading; in particular, our 
master equation gives the complete evolution of any 
density matrix for the system S whereas the coarse­
grained generalized master equation for closed system 
gave only the evolution of its coarse-grained part. 

3. RESERVOIR PROPERTIES 

In this section we specify our assumptions con­
cerning the characterization of the reservoir, and we 
then use these assumptions to derive the above 
properties (a) and (b). For simplicity we restrict our 
analysis to cases where the observables {AR} are 
taken to be the reservoir energyll and smooth func­
tions thereof. Accordingly, the macrocells are chosen 
to correspond to energy shells for R. Thus, DE is the 
projection operator for the subspace i>E of i>R 
which is spanned by those eigenstates of H R in the 
range (E, E + E). Consequently, 

DE = L: dTX.(T) exp {-i(HR - E)T}, (3.1) 

where 21TX.(T) is the Fourier transform of the charac­
teristic function X.(E) on the interval (0, €) [i.e., 
X.(E) = 1 for E in (0, €) and is zero elsewhere]. It 
is readily verified that the application of DE, as 
specified by (3.1), to an eigenstate of H R yields 1 or 0 
according to whether or not the energy lies in 
(E, E + E). The magnitude of € corresponds to the 
limit of precision for our idealized energy measure­
ments. Its value is open to a certain amount of choice, 
though it must be extremely small by comparison 
with macroscopic energies, such as the thermal 
energy of R. We stipulate here that € is equal to some 
characteristic energy quantum for a microscopic 
excitation-e.g., if R is a crystal, € could be chosen as 
the energy of a Debye quantum. The essential point 

11 This simply means that we are considering a situation where the 
reservoir is initially prepared by measurement of its energy or, 
equivalently, its temperature. 
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here is that € = O(N°), where N is the number of 
particles of R. 

We now introduce our assumptions that are 
designed to characterize the reservoir in the thermo­
dynamical limit where its volume and the number of 
its particles both tend to infinity in such a way that 
their ratio remains finite. These assumptions, which 
are intended to be applicable to a large class of 
situations of physical interest, are centered on the 
Heisenberg operators 

JR(x, I) = exp (iHRt)JR(x) exp (-iHRI), (3.2) 

the interaction "potential" Vex, y), and the initial 
state PR(O). The assumptions are that: 

(1) The microcanonical average of products 
JR(x, t)·· 'JR(xn, tn) for states FE' and similar 
states specified below, depends on E and N only 
through the intensive variable E/ N. Thus 

TrR {JR(X1, t1)··· JR(xn, tn)FE} 

_ (n)(~1 ... . ... ) - <p N Xl' , Xn, t1, ,tn' (3.3) 

where the function <p(n)(z I Xl' ... , Xn; t1, ... , In) is 
independent of N. This assumption is generally satis­
fied for cases where JR corresponds to a current or 
number density because (i) the product 

JR(Xl , 11)" 'JR(Xn, In) 

is an intensive quantity, and (ii) in the thermo­
dynamic limit, its microcanonical average is equal to 
its canonical average, which depends on E, N only 
via the temperature, an intensive variable. 

(2) The interaction "potential" Vex, y) is of suffi­
ciently short range to ensure that integrals 

r dx1'" r dxn<p(n)(z I Xl> ... , Xn; t1, ... , tn) 
JOR JOR 

X V(X1' Y1) ... V(Xn' Yn) 

tend to functions of Z;Y1,'" ,Yn; 11,'" ,tn, inde­
pendent of N, in the thermodynamic limit. The same 
is assumed if the set (Xl"" ,xn) is permuted to 
( X ••• x) in <D(n). 

l} , 'In 

(3) The initial energy distribution for R, as defined 
in (2.49), is of the form 

PE(O) =lo(E ~/o), (3.4) 

where/o('I}) is an N-independent function (apart from 
a normalizing constant) of finite dispersion. This form 
is appropriate, for example, in cases where R is 
initially in canonical equilibrium, provided that the 
reservoir is in one thermodynamical phase only, and 
that critical fluctuations can be discounted. Our 

deduction of statements (a) and (b) from these as­
sumptions will be based on an analysis in which we 
discriminate throughout between intensive and ex­
tensive variables. We start by noting that, in view of 
Eqs. (2.5) and (2.37), 

~ pet) = ~ FE ® GE(t), (3.5) 

where 
E 

(3.6) 

We now express Eq. (2.7), for U(t), in the well-known 
interaction representationallo form 

U(t) = Uo(t)n~ (- i)nfdt1 

where 

X f 1
dt2 •• ·ltn-ldtntit1) ... C[(tn), (3.7) 

Uo(t) = exp [- i(CR + Cs)t] (3.8) 
and 

(3.9) 

This latter equation may be seen to be equivalent to 
(2.76). Further, it follows from Eqs. (2.56), (2.57), 
and (3.8) that 

TrR {DiWo(t) ... } == e-iCs(Slt TrR {D~ ... }. (3.10) 

Consequently, by Eqs. (3.7)-(3.10), we may re-express 
Eq. (3.6) in the form 

GE(t) = exp (-iCW)t) I tdt1 t1dt2 ... t"-l dtn 
n=O Jo Jo Jo 

X TrR {DiCit1)· .. Citn)P(O)}. (3.11) 

Moreover, it follows from Eqs. (2.55), (2.56), (3.8), 
and (3.9) that 

Cit) = i~l fo/X t:y Vex, y)C[ (R).i(X, t) 

® cjS).-i(y, t), (3.12) 
where 

cjR).±l(X, t)BR = )2 [J R(X, t), BR]±, (3.13) 

CiS).±l(y, t)Bs = )2 [J s(y, t), Bs ]±, (3.14) 

J s(y, t) = exp (iH.t)J s(y) exp (- iH.t), (3.15) 

and JR(x, t) is defined by Eq. (3.2). On inserting Eq. 
(3.12) into Eq. (3.11) and using the initial condition 
given by Eqs. (2.48) and (2.49) we obtain 
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where 

r(n){:i}(y •.. y 1 t ". t) EE' 1, 'n 1, 'n 

= r dx1'" r dXnV(X1' Y1)" . V(Xn' Yn) 
JOR JOR 

X Y(n){J}(X ". x 1 t ". t) (3 17) EE' 1, 'n 1, 'n . 
and 

y}f'it!}(X1, ... , Xn 1 t1, ... , tn) 

= TrR {DE q·Rl,il(X1, t1) ... c.jR).in(Xn' tn)F E'}' 

(3.18) 

It may be seen from Eqs. (3.13), (3.14), and (3.18) 
that each y¥i]Ji} is a sum of terms of the form 

()EE' = TrR {BWDEBWF E'}' (3.19) 

where the BR'S are products of Heisenberg operators 
JR(x, t); i.e., 

(3.20) 
and 

B~) = J R(X;, tD' .. J R(x;:', t;:'), say. 

Our deduction of the statements (a) and (b) will be 
centered on an analysis of the dependence of ()EE" 

and hence of r EE" on E, E', and N. The key property 
of r, which we seek to obtain, is that its dependence 
on the above variables takes the form 

r (nHi}(y ... y It··· t) EE' 1, 'n 1, 'n 

(
E' , ) 

='¥{j} N,E -EIYu"·,Yn;t1 ,"·,tn , (3.21) 

where the function '¥(u, v I· .. ) is independent of N. 
In order to establish this property for r we divide 

the energy shells (E, E + E) into subshells (E + v, 
E + v + 0). Thus we have 

(3.22) 

and 

FE = 0 L gEvF Ev> (3.23) 
v 

where D Ev is the projection operator for a subshell, 
and 

F Ev = DE'/WEv ; OgEv = WEvIWE; 

WEv = TrR (DEJ. (3.24) 

We shall choose 0 so that W Ev' the number of 
eigenstates of R in the subshell, tends to infinity in the 
thermodynamic limit, while olE tends to zero in this 
same limit. These two requirements for 0 may be 
simultaneously fulfilled as W Ev is equal to oeB 
where S, the entropy of the system, is proportional 
to N. Consequently, we could satisfy the above con­
ditions on 0 by choosing 0 = lOIN, for example. 

As the quantity gEv occurs in YEE" we now ex­
amine its N-dependence. It follows from Eq. (3.24) 
that gEv may be expressed in the form 

gEv = exp [SeE + v) - SeE)], (3.25) 

where SeE) is the entropy expressed as a function of 
energy. Thus, using the thermodynamic relation 
T dS = dE, we have 

SeE + v) - SeE) = . L
v dv' 

o T(E + v') 
(3.26) 

As the temperature T(E) is an intensive variable, it 
may be expressed as a function of EIN only. Hence we 
may replace T(E + v') by T(E) in the above integral, 
since v' IN --.. 0 in the thermodynamic limit. Con­
sequently, it follows from Eqs. (3.25) and (3.26) that 
gEv is an intensive variable, given by 

gEv = exp(vIT) == go(v,~), say. (3.27) 

We now insert the formulas for DE and FE" given 
by Eqs. (3.1) and (3.23), into Eq. (3.19) for (). Thus we 
obtain 

(3.28) 

BW('T) = exp (iHR'T)BWexp (-iHR'T). (3.29) 

As we have specified that 0, the width of a subshell, 
becomes infinitesimal as the thermodynamical limit is 
approached, we may replace FE,v exp (-iHR'T) by 
FE,v exp {-i(E' + v)'T} in Eq. (3.28). Hence, 

()EE' =1: d'TX.('T)exp {iCE' - E)'T}go(E','T) 

X TrR {BW('T)B~)F E'v}, (3.30) 

with 

i.e., by (3.27), 

- (E') ~ ~ ( E') -ivT go ,'T = U -7 go v, N e . (3.31) 

As 0, which is both the first factor in this expression 
and the spacing between values of v, tends to zero in 
the thermodynamic limit, we may replace 0 Lv by 
f dv in Eq. (3.31). Hence 

go(E','T) = lfdVgo(v, ~)e-iVT== 9?(~''T)' say, 

(3.32) 

which depends on E, E', N only through E'IN. On 
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inserting this formula for go into (3.30), we obtain 

o EE' = L: dTX.( T) exp {i(E' - E)T}qJ (~ , T) 
X TrR {BW(T)B~)F E'v}' (3.33) 

Further, it follows from Eqs. (3.20) and (3.29) that 
the trace term in (3.33) is an expectation value of a 
product of Heisenberg operators JR ; i.e., 

TrR [BW(T)B~)F E'V] 

= TrR [J R(X l1 , tl) ... J R(Xln , t lJF E'v]' (3.34) 

We now complete our specification of assumption 
(I) by asserting that the "other mixed states" referred 
to therein are the set {FE,v}' Thus it follows that the 
right-hand side of (3.34) depends on E', v, N only 
through the intensive variable (E' + v)/N, and this 
may be replaced by E'/N in the thermodynamical 
limit. Hence, applying assumption (1) to Eq. (3.34), 

TrR {BW(T)B~)F E'v} 

~= <I>(n)(~ I Xl1 ,"', Xln ; tIl"'" tIn)' (3.35) 

the latter function depending on E', N only via 
E'/N. Further, as OEE' has been specified to be one of 
the terms contributing to the function YEE' , defined 
by Eq (3.18), it is evident from our analysis leading 
from (3.28) to (3.33) and (3.35) that each (Xl;' t l) 
appearing in the latter equation corresponds eith~r 
to an (xm' tm) or to an (xm' tm + T). Consequently 
we denote the right-hand side of Eq. (3.35) by 

(3.35') 

a function possessing all properties postulated with 
regard to <I>(n) in assumption (1). 

On replacing the right-hand side of Eq. (3.35) by 
Eq. (3.35') and inserting the resultant formula for 
TrR { ... } into Eq. (3.33), we obtain 

OEE' = L: dTX.(T) exp {i(E' - E)T }qJ(~ 'T) 

X <I>~n)(Xl' ... , Xn I t1 , ••• ,tn). (3.36) 

Since YEE' is a sum of terms BEE" it follows from 
Eqs. (3.17) and (3.36) that r1;l!j} is a sum of contri­
butions 

X V(Xl' Yl) ... V(xn' Yn)<I>~n)(Xl' ... , Xn I t1 , ••• , tn)· 

(3.37) 

As g and X are intensive variables, it is evident that 

the application of assumption (2) to this expression 
leads directly to the desired result (3.21). 

We now turn our attention to the partial sum 
IE' rEEPE'(O) which appears in (3.16). Using 
assumption (3) and Eq. (3.21) we see that 

I r EE'PE'(O) 
E' 

~ = I'¥(EO + N-*'YJ - N-1/lE;/lE)fo('YJ + N-*/lE), 
liE 

(3.38) 
where 

E-E 
EO = Eo/N; 'YJ - 0 /lE = E' - E, (3.39) 

- N* ' 

and the variables x, y, t, j have been suppressed. The 
variable 'YJ represents energy fluctuations about Eo on 
a scale appropriate for "large" systems (N -- 00). 

Accordingly, we take the thermodynamic limit for 
the right-hand side of (3.38) as corresponding to 
N -- 00, EO and 'YJ finite. Hence, in this limit, 

== I,¥(Eo ; E' - EO)PE(O) 
E' N 

== I r E'EoPE(O). (3.40) 
E' 

It should be noted that the passage from Eqs. (3.38) 
to (3.39) involves a change of the variable of summa­
tion since /lE = (E' - E) in the former equation 
and (E' - Eo) in the latter one. It follows from 
Eqs. (3.17), (3.18), and (3.40) that 

Irj;l!/}(Yl,"', Ynl tl ,"', tn)PE'(O) 
E' 

=PE(O)f dx1···f dxnV(Xl ,Yl)"'V(xn,Yn) 
JOR JOR 

X TrR {CjR),h(x1 , tl )··· cjR).1n(xn, tn)F Eo}' (3.41) 

Further, it follows from Eq. (3.13) that the term 
TrR { ... } in (3.41) in a sum of contributions of the 
form 

TrR {J R(X~, tD ... J R(x~, t~)F Eo}' (3.42) 

where the set (x~, tD ... (x~t~) is some permutation 
of (Xl' t1) ••• (Xn' tn). By assumptions (2) and (3), 
the statistical operator FE may be replaced by PR(O) 
in Eq. (3.42) and, therefor~, also in Eq. (3.41). Hence, 
the latter equation may be rewritten as 

I rj;~/}(Yl' ... , Yn I t1 , ••• , tn)PE'(O) 
E' 

= PE(O) f dxl '" f dXnV(Xl' Yl)'" V(xn' Yn) JOR JOR 
X TrR {CjR),it(X1 , t1) ••• CiR),i,,(Xn, tn)PR(O). 

(3.43) 
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We assume now that the thermodynamical limit 
of the sum of terms for (]E' as given by Eq. (3.16), 
is equal to the sum of the limits of those terms. Hence, 
inserting Eq. (3.43) into Eq. (3.16), and then using 
Eq. (3.5) to obtain :fp(t), we find that 

:fp(t) = ! PE(O)F E (8)! ! (_i)n dt1 ··· dtn <Xl it i
tn

_
1 

E n=O{n 0 0 

X r dx1'" r dXn r dYl'" r dYn JOR JOR Jos Jos 
X Tr {C(R),i1(X t)··· C(R),in(X t)} 

R I 1, 1 I n' n 

X e-i!:s(S)tC(S),-il(x t)··· C(S),-in(x t)(] (0) 
I 1, 1 I n' n S • 

(3.44) 

It may be seen from Eqs. (2.49), (2.56), (3.7), (3.8), 
and (3.12) that Eq. (3.44) is exactly equivalent to the 
pair of equations, namely (2.81), which constitute 
assertion (a). This completes our proof of that 
assertion. 

The proof of assertion (b) is much simpler. Because 
if we use the method we employed to obtain Eq. 
(3.43) from Eq. (3.40), we may replace (V R(Y»EPE(O) , 
as defined in (2.82), by (V R(Y»EoPE(O) and thence by 
(V R(Y»OPE(O). Assertion (b) then follows immediately. 

4. FURTHER SIMPLICATION OF THE 
MASTER EQUATION FOR us(t) 

In this section we make further use of the assump­
tions of Sec. 3 in order to reduce the kernel J{,(S) of 
the master equation for (] S' to a more tractable form. 
It will be shown that the projector :f which appears in 
the kernel of that equation, can be replaced by a 
simpler operator if. 

This operator if will be defined as actil}g on a space 
X. This space will be defined as a subset of .e, which 
will be shown to be large enough to allow a complete 
description of our operations. In fact, X is defined, 
in a way similar to that used in Sec. 2 for the specifica­
tion of .e, as 

(4.1) 

where XR is the subset of .eR formed by all elements 
CR of .eR that have a finite trace.12 We now define 
if as 

(4.2) 
with 

ifRcR = PR(O) TrR CR , for all CR in XR . (4.3) 

We now analyze the kernel J{,(S) of the master 
equation and show that, on the basis of the assump­
tions of Sec. 3, we may replace :f by if in that kernel. 

11 We might note in passing that a norm, but not a scalar product, 
can be defined on ZR and, hence, on Z. Thus Z is not a Hilbert 
space but a Banach space. This does not lead to any difficulty in 
what follows. 

The advantage of this replacement is that it permits 
one to express J{,(S) in terms of correlations between 
Heisenberg operators'R(x, t) in the single state PR(O), 
whereas the use of :f would involve averages and 
correlations over the full set of states FE (cf. Ref. 4). 

The kernel J{,(S) is an operator on .es . By Eqs. (2.27), 
(2.77), (2.80), and (2.92), we may express J{,(S) in the 
form 

J{,(S)(t) = i(-itJ{,~S)(t), (4.4) 
n=O 

where the action of J{,~S) on any element As of .es is 
given by 

J{,~S)(t)As = fdt1 f dt2 .. ·Ltn_ldtn 

X TrR {:f'U's(t)CzCt)(1 - :f)Cz{t1)'" (I -:f) 

X C1(tn)(I - 9')C1PR(O) (8) As}. (4.5) 

Hence, by Eqs. (2.72), (3.12), and (4.5), 

J{,~S)(t) = fdt1S:1dt2' . ·Ltn_ldtn 

where 

X fo/ x fORdX1 .. JOR dXn fORdXo 

X r dy r dY1'" r dYn r dyo Jos Jos Jos Jos 
X Vex, y)V(X1' Y1)'" V(Xn' Yn)V(Xo, Yo) 

X !F~}(x, Xl"'" X n , Xo It, t1,"', tn) 
UJ 

X 'U'W)(t)cjS)'-\Y, t)CjS),-h(Y1' t]) ... 
C(S),-in(y t )C(S),-iO(y 0) 

I n' n I 0" (4.6) 

F~}(x, Xl' ••• , X n , Xo I t, t1 , ••• , tn) 

= TrR {:f RciR),i(x, t)(1 - :f R) 

X ciR),i1(X1, t1) ... (1 - :f R)cjR),in(xn ,tn) 

X (1 - :f R)cjR), io(xo , O)PR(O)}. (4.7) 

Thus the F~}'s are sums of terms of the form 

TrR {:f R.M,(l/:f R.M,~):f R ... :f R.M,~) PR(O)}, (4.8) 

where each .M, R is a product of operators qRl (xm, tm). 
On applying to :f R.A(,RPR(O) the same analysis we 
used to obtain Eq. (3.44) from Eq. (3.40), we find that 

:f R.A(,RPR(O) = if R.A(,RPR(O), (4.9) 

where ~ R is defined by Eq, (4.3). Hence, by Eqs. (4.3) 
and (4.9), 

:fR.M,RifR = ifR.A(,RifR' (4.10) 

Consequently, by Eqs. (4.9) and (4.10), we may 
replace :f R by if R throughout (4.8) and therefore 
throughout (4.7). This means that :f may be replaced 
by if whenever it occurs in our formulas for 3(,(S). 
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Consequently, by Eqs. (2.77), (2.80), (2.91), (2.92), 
(4.2), and (4.3), we may rewrite our master equation 
as 

(~ + iL~~'» O"s(t) + fdt'J(,(S)(t - t')O"s(t') = 0, (4.11) 

where 

is(t)As = TrR {'U's(t)Lit) 

X T exp {-ifdt'(I - if)Lit')(I - if)} 

X LIPO ® As}. (4.12) 

We commented at the beginning of this section on 

the advantage of replacing!T by if. We wish to point out 
that our justification of this substitution rested on 
assumptions (1)-(3) which served to characterize the 
reservoir. If one overlooked the dependence of the 
master equation on those assumptions, one might try 
to derive it directly from the Liouville equation by 
using the operator ;f, instead of !T, right from the 
beginning. We see, however, that this would be 

unjustified, in general, as if does not act on the whole 
Liouville space .e. Thus, the erroneous ab initio use of 
if would reflect an inadequate consideration of the 
physical characteristics of the reservoir which are 
necessary for a replacement of!T by ~. In the present 
treatment, the essential effect of these characteristics 
has been to confine !T P to :to 

5. CONCLUSION 

We have derived a generalized master equation 
(4.11) for open systems. This equation has been 
obtained by a systematic treatment of the microscopic 
equations of motion governing a system of interest S 
and a reservoir R to which it is coupled. The deriva­
tion of the master equation has rested on the general 

principles of quantum theory, supplemented by the 
initial condition (2.48) and by the assumptions (1)-(3) 
concerning the reservoir and its coupling to S. This 
latter coupling appears in the master equation (4.11) 
only in the forms of thermal averages, taken over the 
initial state of the reservoir. The master equation, 
therefore, corresponds to a self-contained dynamical 
law for S, and may be regarded as a generalization to 
open systems of the quantum-mechanical Liouville 
equation. 

Our derivation of the master equation has been 
based on an extension of Zwanzig's projective tech­
nique. It is worth emphasing that this technique must 
be based on the use of a projection operator!T which 
acts in the appropriate Liouville space. The signifi­
cance of this apparently trivial remark may be seen 
from our discussion in Sec. 4, where it was shown 
that the theory could not have been correctly founded 
on the use of the operator if (= ;f2), ab initio, since this 
operator does not act on the whole of the Liouville 
space .e. Thus, it is only in consequence of special 
properties of R, introduced in Sec. 3, that we are 
finally able to replace !T by ;f in the master equation. 

Having formulated the generalized master equation 
for S, we envisage that it can serve as a basis for 
further research along two principal lines. First, it 
could be used in the investigation of general problems, 
such as irreversibility and ergodicity, which have not 
been considered in this paper. Secondly, it could be 
used as a tool for investigation of specific non­
equilibrium phenomena such as transport processes, 
Brownian motion, and spin-lattice relaxation, for 
example. 
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Let D be an irreducible representation of the group SL(n, C) by operators Tg in a Hilbert space H. 
We introduce a canonical basis of vectors h E H, and show how to evaluate the" D-functions" (hi' Tgh2)' 
It has been suggested that one such function has the physical interpretation of the electric-charge form 
factor of the pion. This function is evaluated in detail. 

1. INTRODUCTION 

Let R be the group of rotations in three dimensions; 
let Dr be the irreducible representation of R in a 
21 + 1 dimensional space H, and let Tg be the linear 
operator in H that represents the rotation g E R. One 
of the most important objects that a physicist has to 
calculate, to determine the consequences of rotational 
invariance, is the matrix element 

(hI' Tgh2)' 

where hI and h2 are vectors in H. If hm' m = -I, 
-I + 1, ... , I is the usual basis in H, then a par­
ticular case is the D function 

D~.m.(g) = (m', Tgm). 

Although many other Lie groups have been applied 
to physical problems, the corresponding spherical 
functions or D functions have been of slight interest 
to physicists. However, it has recently been suggested 
that certain particular D functions, related to unitary 
irreducible representations of SL(n, C) may have 
direct physical meaning.1- 3 

Let G denote the group SL(n, C) considered as a 
Lie group with 2(n2 - 1) real parameters. The 
maximal compact subgroup, which is isomorphic to 
SU(n), will be denoted by the letter K. Let D be an 
irreducible representation of G by linear operators 
Tg , g E G, in a Hilbert space H, and let DK be the 
restriction of D to K. Then DK is completely reducible 
to a direct sum of irreducible representations DK(m): 

DK = L EEl YmDK(m). (Ll) 
(m) 

Here Ym is a set of nonnegative integers, and DK(m) 
is the usual nomenclature for irreducible representa­
tions of SU(n) in terms of a set m = (mI' m2 , ••• , 

mn_ 1) of n - 1 nonnegative integers. 

• On leave of absence from University of California, Los Angeles. 
t On leave of absence from Atomic Energy Centre, Dacca, 

East Pakistan. 
I C. Fronsdal, Proceedings of the Seminar on Elementary Particles 

and High-Energy Physics, Trieste 1965 (IAEA, Vienna, 1965). 
2 G. Cocho, C. Fronsdal, Harun Ar-Rashid, and R. White, ICTP, 

Trieste, preprint IC/66/27 (to be published in Phys. Rev. Letters). 
3 H. Leutwyler, Phys. Rev. Letters 17, 156 (1966). 

Corresponding to (1.1) there is, of course, a 
canonical reduction of H 

H = L EEl H m , (1.2) 
(m) 

where Hm is a closed, finite-dimensional subspace of 
H, that admits a Ym-fold copy of the irreducible 
representation DK(m) of the maximal compact sub­
group. A basis may be introduced in H by selecting 
an orthonormal basis in each one of the subspaces 
Hm; such a basis will be called a canonical basis. A 
basis is canonical if and only if every basis vector 
belongs to a closed subspace of H that transforms 
under K according to a Ym-fold copy of DK(m). 

Definition I: A function over G is called a "D­
function" if it is one of the functions 

(1.3) 

where D is an irreducible representation of G by 
linear operators Tg in a Hilbert space H, and hI, h2 
are two vectors belonging to a canonical basis in H. 

Definition II: A function IPm(g) is called a "spherical 
function of height Y m" if it is one of the functions 

IP~\g) = L D~:;,>(g) = L (h, Tgh), 
hEHm hEHm 

where the sum goes over a complete orthonormal 
basis in Hm. If E(m) is the projection operator that 
projects H on Hm, then IPm(g) is the trace of E(m)Tg .4 

General integral formulas for D functions (and for 
spherical functions) are easily obtainable, along with 
differential equations and functional equations.s- 8 

Unfortunately, the explicit evaluation of the integrals 
is quite difficult and has been accomplished in special 

• R. Godement, Am. Math. Soc. Trans!. 73, 496 (1952). 
• I. M. Gel'fand, Dokl. Akad. Nauk SSSR 70, 5 (1950) Sov. 

Phys.-Dok!. 
6 I. M. Gel'fand and M. A. Naimark, Unitiire Darstellungen der 

Klassischen Gruppen (Akademie-Verlag, Berlin, 1957). 
7 Harish-Chandra, Am. Math. Soc. Trans!. 76, 234 (1954). 
8 S. Helgason, Differential Geometry and Symmetric Spaces 

(Academic Press Inc., New York, 1962). 
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cases only. Gel'fand and Naimark5•8 gave the com­
plete result in the case when Hm is one-dimensional; 
in this case the D function D~7:.)(g), h E H"., coincides 
with the spherical function q;!f)(g). This is reviewed 
in Sec. 2. Harish-Chandra7 obtained a generalization 
of the Gel'fand-Naimark formula to any complex 
semisimpleLie group. Our purpose is to show how 
other D functions may be related to the Gel'fand 
functions in a way that is suitable for explicit 
evaluation (Sec. 4). As an example we complete the 
calculation of the "pion form factor" (Sec. 5). 

2. THE GEL'FAND FUNCTIONS 

The group SL(n, C) is (isomorphic to) the group of 
unimodular n X n matrices. It is, therefore, conven­
ient to think of an element g E G as such a matrix, 
so that the group product g . g' is just the product 
of the corresponding matrices. In particular, g belongs 
to the maximal compact subgroup K if it is unitary. 
An element of K will usually be denoted by the letter 
u. When we next describe the representations of 
SL(n, C) we deliberately leave out all the details, 
since it will be seen that all our results follow directly 
from the general definition (1, 3) of the D functions. 

At first we shall limit ourselves to the nondegenerate 
principal series of unitary, irreducible representations. 
This entails no essential loss of generality, as will 
be seen. According to Gel'fand and Naimark,6 every 
unitary irreducible representation of the nondegener­
ate principal series may be characterized as follows9

: 

(i) The Hilbert space H consists of all complex­
valued functions h(u) , over the maximal compact 
subgroup K, that satisfies the conditions 

h(yu) = oc(y)h(u), (2.1) 

where y is any diagonal unitary matrix, the function 
oc(y) is discussed below, and 

IIhl1 2 = (h, h) < 00, (2.2) 

where the inner product in H is defined by 

(hl' h2) = f h:(u)h2(u) duo (2.3) 

The measure du is independent of the representation. 
(ii) The operators Tg of the representation act on 

h(u) in the following way: 

Tgh(u) = oc(g, u)h(ug), 

oc(g, u) = oc(ug)/oc(u), 
(2.4) 

where the unitary matrix Ug is determined by u and g 
up to left multiplication by a diagonal unitary matrix 

8 Ref. 6. Sec. 8. 

[compare (2.1)]. In particular, ug = ug if g is unitary 
(g EK). 

(iii) The multiplier function oc(g) depends on the 
representation. The unitary irreducible representations 
of the nondegenerate principal series are identified by 
the values of n - 1 integers mO = m~, •.• , m~_l and 
n - 1 real numbers p = P2, ••. ,Pn' The integers 
have a very simple meaning: of all the irreducible 
representations D(m) of K that occur in the reduction 
(1.1) of DK , the one with the least highest weight is 
D(mO). The multiplicities Ym in (1.1) are completely 
determined by mO, and YmO = 1. The real parameters, 
along with mO, determine the function IX(g). The latter 
should, therefore, be denoted more completely as 
oc(g, mO, p). 

Let h(u) be the function that corresponds to the 
canonical basis vector h; then the definition (1.3) for 
the general D function becomes the formula 

Di~o.p)(g) =fh:(U) OC(~g, n:o, P; h2(Ug) duo (2.5) 
IX u, m , P 

Although everything on the right-hand side of this 
formula is known in principle, the actual integra­
tion is usually of forbidding complexity. However, 
Gel'fand5 succeeded in carrying out the integrations 
in a special case. 

An irreducible representation D of SL(n, C) is said 
to be of Class I if the one-dimensional representation 
D(O) of K occurs in the reduction (1.5) of D K • [This 
definition applies to all types of irreducible representa­
tions, unitary or noL provided only that the reduction 
(1.1) exists; that is, it applies to all irreducible repre­
sentations in a Hilbert space.] In other words, D is 
of Class I if and only if H contains a vector ho that is 
invariant with respect to the transformations Tg , 

g E K. It is easy to prove that any two such vectors are 
linearly dependent. A unitary representation of the 
principal nondegenerate series is of Class I if and 
only if mO = O. Now let ho be a canonical basis vector 
in Ho; that is, ho E Ho and llholl = 1. The correspond­
ing function ho(u) is invariant under 

oc(uu') , 
ho(u) - T",.h(u) = -- ho(uu ), (2.6) 

oc(u) 

from which it follows that oc(u)ho(u) is independent of 
u. By a suitable renormalization of the basis (which 
preserves llholl = 1) one may arrange that oc(u) = 
ho(u) = 1, so that (2.5) reduces to 

q;~o.p)(g) = D~~t)(g) = (ho, Tgho) 

= J IX(Ug, 0, p) duo (2.7) 
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Because Ho is one-dimensional, this particular D 
function is also a spherical function. 

Gel'fand's result is5 •IO 

(
2)n<n-II/2 

IP~O.pl(g) = i ·1! 2! ... (n - 1)! 

x [I::;}I::;n(Pa - pp)(A~ - A!)T
I 

1 1 

A~P' A~P' AiP• 
n 

X A~P3 A~P3 AiP3 
n , (2.8) 

Atn A~Pn AiPn 
n 

where AI' ... , An are the moduli of the eigenvalues 
of the matrix g, and Al . A2 ... An = 1. The next step 
is to extend this result to arbitrary Class I representa­
tions. This is, in fact, trivial, for every irreducible 
Class I representation of SL(n, C) may be described 
as an analytic continuation of those of the principal 
nondegenerate series, to complex values of the 
parameters P2"", Pn' The precise nature of this 
process of analytic continuation of representations 
does not concern us here,u 

To summarize: every irreducible Class I repre­
sentation of SL(n, C) may be labelled by a set of 
n - 1 complex parameters P2' ... , Pn' The spherical 
function (ho, Tgho) for anyone of these representations 
is given by the expression (2.8), where AI' ... , An 
are the moduli of the eigenvalues of the matrix g.12 

Two problems remain: (1) to use Gel'fand's result 
for lP~o,p)(g) to calculate other D-functions for Class I 
representations, and (2) to obtain a suitable generali­
zation of Gel'fand's formula to representations with 
rnO ¢ O. Only the first problem is tackled in this paper. 13 

3. DESCRIPTION OF THE ALGEBRA AND 
THE CANONICAL BASIS 

From the representation D of the group, by 
operators Tg in a Hilbert space H, one may pass to a 
representation D of the corresponding Lie algebra, by 
operators L in a vector space H that is dense in H. 
We define H as the set of all vectors in H that have a 
finite number of nonzero components with respect to 

10 The calculation is given in detail in Ref. 6. Sec. 9. See also 
Ref. 7, p. 253. 

11 See our review "Representations of SL(n, C)," ICTP, Trieste, 
preprint IC/66/51. 

121. M. Gel'fand and M. A. Naimark pointed out that this result 
holds for unitary representations. See Ref. 6, Appendix. 

13 For representations of the most degenerate series that are 
labelled by one real parameter and one integer k (with k = 0 for 
representations of Class I), we have noticed some simple relations 
between spherical functions for different values of k. See Ref. 2. 

a canonical basis. From general results of Harish­
Chandra14 we know that the operators of the algebra 
are defined on H, and that difficult concepts such as 
topological equivalence and topological reducibility 
of D are equivalent to purely algebraic properties 
of D. 

The algebra of SL(n, C) is (isomorphic to) the Lie 
algebra of traceless, n-dimensional square matrices. 
We denote such matrices by the letter E. If the uni­
modular matrix g is near 1, then 

g = 1 + itE + 0(t 2) (3.1) 

where t is a real parameter that tends to zero when 
g tends to 1. If E{ denotes a matrix element of the 
matrix E, then matrices A~ and A;i are defined by 

E = (El + E~*)A~ + iCE: - E;*)A~i, (3.2) 

and satisfy the commutation relations 

[AI. A~] = _[A;i, A~l] = bIA~ - b~AL 

[AI , A~l] = O. 
(3.4) 

These relations define an abstract Lie algebra. A 
set of linear operators in H that satisfies the commuta­
tion relations of the A~, A;i will be denoted A~ and A/ . 
The matrix g is unitary if the matrix E is hermitian; 
hence A{ generate the transformations of the compact 
subgroup K. We refer to A{ as compact generators and 
to A;i as noncompact generators. 

Even though each subspace Hm is finite dimensional, 
it is difficult to fix a canonical basis in H m in a general 
and simple way. The reason is that, whenever Ym > 1, 
there are sets of vectors in H m that cannot be dis­
tinguished from each other by simultaneous eigen­
values of a complete set of operators in the enveloping 
algebra. There exists no solution of this "labelling 
problem," of sufficient simplicity and generality that 
one can hope to give general closed expressions for 
all D functions. There is, however, a very simple 
procedure that allows the labelling of the vectors of 
any finite number of Hm's, and this system of labelling 
is particularly well suited to the calculation of D 
functions. 

We begin with Ho. Let ho be any nonzero vector in 
Ho. Since Ho is a closed subspace of H, and H is a 
Hilbert space, the norm of ho is defined, and we 
choose ho so that Ilholl = 1. This gives a complete 
orthonormal basis in Ho. Next, consider the vectors 

(3.5) 

,. See Ref. 11 and original papers quoted there for details. 
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These vectors span an n2 - I-dimensional closed sub­
space of H that is invariant and irreducible with 
respect to K. The vectors 

(3.6) 

span another closed subspace of H. It is invariant but 
not irreducible under K; it may easily be reduced by 
ordinary tensor reduction methods. Continuing this 
process one constructs an infinite number of closed 
subspaces of H, each invariant and irreducible under 
K. Clearly, each one of these subspaces is a subspace 
of some Hm. The final step, which we need not de­
scribe in detail, is to set up an orthonormal basis in 
each of the invariant, irreducible subspaces. 

Let hI and h2 be any two canonical basis vectors, 
constructed by the method just outlined. Then there 
exist operators Ql and Q2 that are homogeneous 
polynomials in the A? , such that 

hI = Qlho, 

h2 = Q2ho. 
(3.7) 

These operators are not unique; in practice they must 
be chosen so as to have the lowest possible degree of 
homogeneity in the A~; . 

4. D FUNCTIONS FOR CLASS I 
REPRESENTATIONS 

From the definition (I.3) of the general D function 
and the choice (3.7) of the canonical basis, we find 

(4.1) 

The right-hand side can be expressed in terms of 
Gel'fand's function and its derivatives. The correctness 
of this statement, as well as the prescription for 
carrying out the calculation, will become quite clear 
after we have studied the cases when the degrees of 
homogeneity of Ql and Q2 are zero or 1. 

Let 
g' = (I + ite)g(l + it'1}), (4.2) 

where t and t ' are arbitrarily small real parameters and 
e and 1} are traceless antihermitian matrices. Then 

Tg. = (1 + iL)TaCl + W), 
(4.3) 

L = 2itefN/, L: = 2it''Yj:CJW. 

Since !Po (g) depends on the moduli Ak of the eigen­
values of g' only, we have 

!PO(g') = !Po(g) + (AAk + A'Ak) O~k !Po(g) 

where 
A~ = Ak + AAk + A'Ak + A"Ak + ... , (4.5) 

and AAk is a linear function of e, A' Ak is a linear 
function of 'Yj, and A"Ak is linear in both. Introducing 
(4.3) and (4.4) into the formula 

!Po(g') = (ho, Tg.ho) 

we get the following: 

(ho, iLTgho) = AAk ~ !Po(g), 
OAk 

(ho, TgWho) = A'Ak~ !Po(g), 
OAk 

(4.6) 

This procedure can obviously be repeated indefinitely, 
to calculate every D function represented by the 
formula (4.1). 

The variations AAk, A' Ak and A" Ak are calculated 
by straightforward second order perturbation theory, 
with the result 

AAk = Re (iteg)~, A'Ak = Re (it'g'Yj)~, 

1 
A"Ak = Re (itegit''Yj)~ + 1 

mH Ak - Am 

X Re [(iteg);:(it'g'Yj)~ + (igt''Yj);:(iteg)~]. (4.7) 

If we insert this into (4.6) and take g to be diagonal 
with positive eigenvalues AI' ... , An' we then find 

(ho, TgA';kho) = (ho, AikTgho) = ~ b~Ak ~ !PO(A) , 
21 OAk 

4(ho, A;iTgA~ho) = -tbIbk( Ai O~k + Ak O~) !Po(A) 

(4.8) 

A very slight modification of the procedure gives 

4(ho, A~i A~Tgho) = -!bIbk (Ai O~k + Ak a~) !Po(A) 

_ !b;bk 1 - bik AiAk (~ _ ~) 
Ak - Ai a Ai OAk 

X !Po(A) - bfb~AiAk.-L !Po(A). 
OAiOAk 

(4.9) 
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5. THE PION FORM FACTOR 

We shall complete the calculation of the D function 
in a special case. The specializations are the following: 
(i) Take n = 6 in SL(n, C); (ii) take g to be diagonal, 
with 

Al = A2 = A3 = A41 = ASI = ).61 = A; (5.1) 

(iii) take the values of the parameters Pk to be those 
of one of the most degenerate representations, 
namely15 

ip2 = -2(M + I), ipa = -2(M + 2), 

ip4 = -2(M + 3), ips = -2(M + 4), (5.2) 

ip6 = -2(2M + 5). 

These values define a unitary representation of the 
principal series if 

M = -t + ip, P real, (5.3) 

and a unitary representation of the supplementary 

1 0 0 

series if M is real between -3 and -2; (iv) take 

0 0 

0 0 0 
0 0 0 

e+='Yj=-
0 0 

0 0 0 

0 0 0 

This means that the left side of (4.4) becomes 

(h, Tgh), (5.4) 

h ""' (A~2 + A~5)ho. (5.5) 

In a model that applies unitary representations of 
SL(6, C) to elementary particle physics, this function 
may be interpreted as the electric charge form factor 
of the pion.t6.17 

Approaching the limit (5.1) we obtain the following 
expression for the Gel'fand function (2.8): 

IPo(A) ""' (A2 - ).-2)-9 D1,2, 

where 

1 0 0 

)/P2 C:2) A
iP2

-
1 (P2) ).-iP2 ip2A- iP2+! 

C

P2

) 
1 ).iP2-2 2 ).-iP2+2 

Dk .!= (5.6) 

Aips 
C

P3

) 
k ).ips-l CP3) 1 ).ips-2 A-iP3 iPsA-iPs+! CP3) 2 ).-ips+3 

Evaluating the determinant we get, setting y = ).2, 

) 
(ho, Tgho) -1 

IPo(Y = (h
o

, ho) = (y _ y-l)9 

x [4(M + 1)(M + 4)(2M + 5)(i _ y-3
) 

- 12(M + 2)(M + 3)(2M + 5)(y _ y-l) 

_ (M + 3)2(M + 4)2(y2M+l _ y-(2M+ll) 

+ 4(M + 2)2(M + 4)2(y2M+3 _ y-(2M+3l) 

- 6(M + 1)(M + 2)(M + 3)(M + 4) 

X (y2M+5 _ y-(2M+5l) + 4(M + 1)2 

x (M + 3)2(y211I+7 _ y-(2MHl) 

_ (M + l)2(M + 2)2(y2M+9 _ y-(2M+9»)J. 

(5.7) 

Because of the special relationships (5.1) it is 
necessary to use the formula (4.8) in the sense of a 

15 See Ref. 11, Sec. VI, 4. 

limit. IS We find 

(h, Tgh) ""' lim _A_l - ().21- - ).11-) 
J.2"'J.l A2 - ).1 a).2 a).1 

x IPo().) + (). -+ ).-1). (5.8) 

(Using degenerate perturbation theory to determine 
A").k we obtain the same answer.) From (2.8) and 
(5.8) we find 

(h, Tgh) ""' (A2 _ ).-2)-9 

x -- D D - D - D [( 12 3) ] 
().2 _ A-2)2 4 1.2 + 1.3 1,4 2.3 , 

where Dk! is the determinant (5.6). After evaluating 

16 G. Cocho, C. Fronsdal, Harun Ar-Rashid, and R. White, ICTP, 
Trieste, preprint IC/66/84. 

17 The vector h represents a pion at rest and T. is a Lorentz 
transformation. See also Refs. 11 and 13. 

18 Actually the function (5.4) is given by (4.7), rather than by (4.8). 
In the special case studied here T. commutes with the generator in 
(5.5), and (4.7) agrees with (4.8). 
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the determinants we get 

F(y) = c[M(M + l)\M + 2)2(M + 3)2 
X (M + 4)2(M + 5)(2M + 5)]-1 

{ 
48 1 

x - ( -1)2 ((JO(y) + ( -1)9 y-y y-y 

x [2(M + l)(M + 2)(M + 3)(M + 4) 

x (2M + 5)(/ - y-3) - 2(M + 2) 

x (M + 3)(2M + 5)(3M2 + 15M + 20) 
x (y - y-l) _ l-(M + 2)(M + 3)2(M + 4)2 
x (M + 5)(y2M+l - y-(2M+1I) + t(M + 2)2 
x (M + 3)2(M + 4)2(lM+3 _ y-(2M+31) 

- 2(M + 1)(M + 2)(M + 3)(M + 4) 
x (M2 + 5M + 7)(lM+5 _ y-(2M+5I) 

+ t(M + 1)2(M + 2)2(M + 3)2 
x (lM+? - y-(2M+?I) - tM(M + 1)2 

x (M + 2)2(M + 3)(lM+9 _ y-(2M+9I)]}, 

(5.9) 
where c = -3150. 

JOURNAL OF MATHEMATICAL PHYSICS 

For practical use, the above form of the result is 
awkward, because it is difficult to calculate numerical 
values in the neighborhood of g = 1 (i.e., y = 1). 
For special values of M, however, one may verify that 
the function is normalized to 1 at y = 1. Thus, for 
M = 1, (5.9) reduces to 

!(y + y-l)2, 

and for M = -! we find 

F(y) = 112 l [-10l - 28i + 235y4 
9 (y + 1)10 

+ 722l + 640y2 + 134y + 35] 

+ 2240 yS [y4 _ 26l + l](y _ 1)-7 
3 (y + 1)7 

X [In y - tCy :... 1) + ... + ley - 1)6]. 
(5.10) 

The physical implications will be discussed elsewhere. IS 
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A method for the calculation of the two-particle statistical density matrix for attractive Coulomb 
~orces is d~cri~ed. The path-integral expression for the density matrix is reduced to a modified path 
mtegral whlc~ mv~lves summation ~)Ver ~nly one-di~ensional paths. This expression is then approxi­
~ated by an IteratIon procedure USIng dIrect numerIcal quadratures. The results obtained are related 
dIrectly. to the quantum-mechanical radial-distribution function for a plasma at small ion-electron 
separatIOns. 

1. INTRODUCTION 

A classical calculation of the radial-distribution 
function for ions and electrons in a plasma leads to a 
divergence of the form exp (f3e2Jr) at small separations 
(f3 = tJkI). It has long been recognized that this 
divergence occurs because of the use of classical 
mechanics and that a full quantum-mechanical calcu­
lation would eliminate the divergence by providing a 
lower limit to the energy between two oppositely 
charged particles. Because one intuitively feels that the 
use of quantum mechanics should have little effect on 
high-temperature plasma calculations, the usual 
procedure to overcome this difficulty is to use some 
form of modified potential, usually one which is 

cutoff in some way at a distance corresponding to the 
Bohr radius. 1 This is not really satisfactory, particu­
larly at temperatures of the order of 104 OK, so an exact 
calculation of the quantum-mechanical radial-distri­
bution function at small separations would be most 
useful. The two-particle contribution to the radial­
distribution function for a hydrogen plasma is the 
dominant contribution for small separations, low 
densities, and temperatures which are high enough to 
dissociate the hydrogen molecule. For large separa­
tions, many-body effects give rise to Debye screening. 
At these temperatures, this is an effect that can be 
described adequately using classical mechanics; so 

1 H. S. Green, Nucl. Fusion 1, 69 (1961). 



                                                                                                                                    

964 C. FRONSDAL AND H. AR-RASHID 
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since we are interested here primarily in quantal effects, 
we restrict our discussion to a pure Coulomb potential. 

In this two-particle approximation, the radial­
distribution function is proportional to the diagonal 
element of the coordinate representation of the density 
matrix 

where H is the two-particle Hamiltonian and x and 
yare the coordinates of the electron and ion, respec­
tively. The center-of-mass component of this density 
matrix can be written down immediately and we can 
define the density matrix p(rl' r2 , (3) for relative 
motion by the equation 

(Xl' Yll exp (- f3H) Ix2 , Y2) 

(
27T1i2f3)-i (Xl - X2)2) = M exp - 27T1i2f3/M p(rl' r2 , (3), (1.1) 

where M is the combined mass, rl = Xl - Yl and 
r2 = X2 - Y2 are the relative coordinates, and Xl and 
X2 are the center-of-mass coordinates. If we define 
g2(r) as the two-particle approximation to the radial­
distribution function, then 

(
27T1i2 f3)! g2(r) = -fl- p(r, r, (3), (1.2) 

where r = Irl and ft is the reduced mass of the electron. 
There are several ways by which one could attempt 

to calculate p(rl' r2, (3). This function satisfies the 
Bloch equation op 

-= -Hp 
of3 

(1.3) 

with p = Q(rl - r2) at f3 = 0, where H is the Hamil­
tonian corresponding to the relative motion. One 
can obtain a formal solution to this equation in terms 
of a summation over the bound-state wavefunctions 
V'.(r) and an integration over all the wavefunctions 
corresponding to the continuous spectrum V'(k, r), 

p(rl' r 2 , (3) = ~ exp (-f3E.)V': (r1)V'.(r2) 
• 

+ f dk exp (-f3Ek)V'*(k, r)V'(k, r). (1.4) 

In theory, the use of this equation is a straightforward 
procedure. However, in practice, the calculation of 
the wavefunctions, particularly for the scattering 
states for all .values of k, can be a time consuming 
operation.2 

In this paper we use the expression for the density 
matrix in terms of sums over paths. This technique 
was first used in physics by Feynman and has been the 
subject of several reviews.3- 5 Some numerical calcu-

2 A. A. Barker, Australian J. Phys. 21, 121 (1968). 
3 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path 

Integrals (McGraw-Hill Pub\. Co., Inc., New York, 1965). 
• S. G. Brush, Rev. Mod. Phys. 33, 79 (1961). 
.1. M. Gel'fand and A. M. Yaglom. J. Math. Phys. 1,48 (1960). 

lations have been made of path integrals6 •7 using 
Monte Carlo methods; in contrast to these, an itera­
tion procedure and numerical quadratures are used 
here. In the notation of Brush,4 for a potential V(r) , 

p(rl' r2, (3) = f exp {-1'J V(r(t» dt}dQl(O,r1;p.r2 )r(t). 

. (1.5) 

This integral denotes a summation taken over all 
possible paths that a particle can take when it is 
moving by means of Brownian motion, starting at rl 
and ending at r2 at "time" f3. One can write this 
expression in terms of a limit which is equivalent to 
breaking the paths into N piecewise-straight pieces and 
letting N become infinite. Then, 

p(rl' r2, (3) 

= lim f·· 'Ids2 '" dSN IT P(O)(Si' Si+1' (3) 
N~oo ~l 

X exp {- ~ [tV(SI) + i~ V(Si) + tV(SN+l)]} 

= lim J ... JdS2· .. dSN IT exp {- J!.... V(Si)} 
N~oo i=l 2N 

is the free-particle density matrix. When the path 
integral is written in this way, one can see readily that 
it is equivalent to writing 

p(rl' r2, (3) 

= (rll exp (-f3H) Ir2) 

= lim f' . 'IdS2' .. dSN (rll exp (-f3H/N) IS2) 
N~CIj 

X (s21 exp ( - f3H / N) IS3) ... (sNI exp (- f3HI N) Ir2) 
(1.8) 

(which is an exact equation even for finite N) and then 
replacing each factor by its high-temperature approxi­
mation, i.e., putting 

(rll exp (- f3H / N) Ir2) 

~exp (- :N V(rl»)p(O)(rl,r2'~) 
X exp ( - :N V(r2») , (1.9) 

which is a good approximation when the argument 

• L. D. Fosdick and H. F. Jordan, Phys. Rev. 143, 58 (1966). 
7 M. D. Donsker and M. Kac, J. Res. Nat\. Bur. Std. B44, 551 

(1950). 
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of the exponential ((J/2N)V(r) is in some sense small 
for all values of r or at least for all values of r except 
a set whose measure approaches zero when N -+- 00. 

For the purposes of numerical computation, a value 
of N is chosen large enough so that the final result is 
insensitive to an increase in N. 

Previous calculations using the path-integral ap­
proach have relied on a Monte Carlo sampling 
procedure to evaluate the many-dimensional integrals 
involved. This has produced satisfactory results for 
high enough temperatures but suffers from the defect 
that when the variance becomes large the amount of 
computation needed to produce reasonable results is 
increased enormously: The method used here is to 
note that the path integral can be expressed in terms 
of an iterative procedure. We note that 

p(rl' C2, 2{J) = f dcp(cl , C, {J)p(c, C2, (J), (LlO) 

so that if p(rl' C2 , (J) is known or can be approximated, 
for example, by 
p(cI , C2, {Jr = exp {-{JV(r l )/2}p(0)(cl , C2, (J) 

xexp{-{JV(r2)/2} (Lll) 

for small {J, we have an equation which could be used 
to determine the density matrix at half the temperature. 
Hence one could start an iteration procedure by using 
equation (1.11) for small {J and evaluating the integral 
in Eq. (LlO) by numerical quadratures. After n steps, 
one would have e"taluated the equivalent of an integral 
of (2n - 1) dimensions and reached a temperature 
corresponding to 2n{J. 

The case where the potential is a Coulomb inter­
action is particularly suited to this procedure because 
the symmetries which exist for the Coulomb potential 
enable us to carry out all the numerical integrations in 
one dimension. Before proceeding with the details 
of the numerical procedure, we show how this simpli­
fication can be made. 

2. REDUCTION OF THE COMPLETE COULOMB 
DENSITY MATRIX IN TERMS OF THE 

S-WAVE CONTRIBUTION 

In this section it is shown that the complete three­
dimensional density matrix for a pure Coulomb 
system can be expressed entirely in terms of the S­
wave contribution. This follows closely the technique 
used by Hostler and Pratt8 in the consideration of 
Green's function for the Coulomb system. The results 
of Hostler9•lo could be used directly by noting that 
our density matrix is the inverse Laplace transform of 
the Green's function that he obtains. 

8 L. Hostler and R. H. Pratt, Phys. Rev. Letters 10, 469 (1963) . 
• L. HostIer, J. Math. Phys. 5, 591 (1964). 

10 L. HostIer, J. Math. Phys. 8, 642 (1967). 

The equation satisfied by the Coulomb density 
matrix is 

(
V2 +~) (C C (J) = Op(CI , C2, (J) (2.1) 

2 r
2 

PI' 2, O{J 

with the initial condition P(CI' C2, 0) = c5(3l(CI - c2). 
The unit of length has been chosen here to be the 

Bohr radius 00 = fj2/ fte2 and the unit of energy to be 
the ground-state energy Eo = fte4/2fj2, With these 
units a. = 2 and for a proton-electron system the 
temperature in degrees Kelvin is related to (J via 

T = 1.5778 X 105/{J OK. (2.2) 

We shall use these units in the remainder of this paper. 
The density matrix for any central potential can be 

expanded in terms ofthe contributions from all partial 
waves: 

Q) (21 + 1) 
p(cl , c2 , (J) = L p!(rI , '2' (J)P,(cos 0), (2.3) 

!=o 47T'I'2 

so that per I , C 2, (J) depends only on r I, r 2 and the 
angle 0 between CI and C2 • In view of Hostler's result, 
we now make the following change of variables: 

x = (ri + r2 + IC2 - cI D/2, 
Y = (ri + '2 - IC2 - cI D/2, 

and consider the function O'(x, y) defined by 

1 (0 0) P(CI' C2 , (J) = - 47T(X _ y) ox - oy O'(x, y). 

(2.4) 

(2.5) 

By using these new variables in Eq. (2.1), one finds 
that 0' satisfies the equation 

(1.. - 1..) {x(X - 'l)[~ + ~ _1..J 
oX oy ox2 x 0{J 

+ y(y - '1)[ 02

2 
+ ~ _1..J}O' = 0, (2.6) 

ox y 0{J 

with boundary and initial conditions O'(x, y) = 0 
when x = 0 or y = 0 and O'(x,y) = c5(x - y) at 
{J = O. Since p is symmetrical with respect to r l and C2 , 

one solution to this equation is the solution of 

(0
2 

a. 0) 
ox2 + ~ - 0{J O'(x, y) = 0, (2.7) 

with the same boundary and initial conditions. This 
equation is exactly that satisfied by the S-wave 
contribution po(rI , r2, (J) to p(rI' C2 , (J). Symmetry 
excludes any contribution to 0' which depends only on 
(x + y) and r I , so 0' must be identical to Po. Hence, 

1 (0 0) p(cI , C2 , (J) = - 47T(X _ y) ox - oy Po(x, y, (J), 

(2.8) 
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where 

and 
x = (r1 + r2 + Ir2 - r 11)/2 

y = (r1 + r2 - Ir2 - r l l)/2. 

It is worthwhile to note that this relation is satisfied 
by the free-particle density matrix p(0)(r1 , r 2 , (J), i.e., 
in the case where at = O. 

Equation (2.8) is satisfactory for calculating the 
off-diagonal terms of perl' r2 , (J). However, in any 
numerical computation of the diagonal terms, the 
factor (x - y) occurring in the denominator leads to 
an awkward limiting procedure. We can improve this 
situation by changing variables to 

r = (x + y)/2 and s = (x - y)/2, 

and expanding Po(x, y, (J) in powers of s. Then 

1 0 
p(r1' r 2 , (J) = - - - po(r + s, r - s, (J), 

81TS oS 
for rI:F r2, (2.9) 

and 
1 02 

per, r, (J) = - - -2 po(r + s, r - s, {J)ls=o. (2.10) 
81T os 

Equations (2.9) and (2.10) then enable us to reduce 
the complete three-dimensional problem to a one­
dimensional problem for which we can obtain a direct 
numerical solution. 

3. NUMERICAL PROCEDURE 

In view of the results of the last section, we will be 
primarily interested in the S-wave analog of Eq. (1.6). 
We can obtain this by using the expansion in Eq. (2.3) 
and the corresponding expansion for the free-particle 
density matrix, i.e., 

(0)( {J ~ (21 + 1) (0)( (J 0) P r I ,r2 , )=~ PI rI ,r2 , )PI(cos 
1=0 41Tr1r2 

= !(21 + 1)(41T{J)-i 
1=0 

X exp (-(r~ + r~)/4{J)i-1z(rlr2i/2{J)Pz(cos 0), (3.1) 

where jz is the spherical Bessel function [jo{iz) = 
sinh z/z). Then, using the orthogonality properties of 
the Legendre functions and equating the coefficients of 
Pz(cos 0) on both sides of Eq. (1.6), one obtains 

pt(rI , r2 , (J) = lim {oods1 ••• {oodsN 
N-+ 00 Jo Jo 

N 

X II exp (-{JV(si)/2N -(JV(SHI)/2N) 
i=l 

x plO)(Si, Si+I, (J), (3.2) 

with SI = r i and SN+l = r2 • Hence the analog of Eq. 
(1.10) for the S-wave contribution is 

po(r1 , r2 , 2{J) = loo drpo(rI , r, {J)po(r, r2, (J), (3.3) 

and for sufficiently small {J we can approximate Po by 

po(r1 , r2, (J) = exp ({J/rI)p~O)(rI' r2, (J) exp ({J/r2), (3.4) 

with 

p~O)(rl> r2, (J) = (41T{J)-t{exp (-(ri - r2)2/4{J) 

- exp (-(ri + r2)2/4{J)}. (3.5) 

If we write Eq. (2.13) as 

po(rI , r2, 2{J) = LRdrpo(r1 , r, {J)po(r, r2, (J) 

+ fR
oo 

drpo(rI , r, {J)po(r, r2 , (J), (3.6) 

we can readily use a trapezoidal rule to evaluate 
numerically the first term over a square grid of points 
in (rl' r 2) space. Since the function p~O) falls off so 
rapidly when r differs significantly from r 1 or r 2, the 
criteria for this rule to work efficiently are satisfied 
(see, e.g., Sag and Szekeresll), so it is not necessary to 
use a more sophisticated rule. For a grid with M 
divisions each of width 6.r, and R = (M + t)6.r, 
Eq. (3.6) is then equivalent to calculating the square 
of the matrix Pi;({J) = po(i6.r,j6.r, (J), I < i < M, 
I < j < M and adding the correction term 

fRoodrpo(i6.r, r, (J)po(r,j6.r, (J) (3.7) 

to each element of pii(2{J). This correction term in­
volves knowing po(rI , r2 , (J) at each stage of the 
iteration for r i or r2 greater than R and since we do 
not calculate these values of Po, we need to find some 
method for finding an approximation for this term. 
For sufficiently large values of r i and r 2 , Po is nearly 
equal to the S-wave contribution to the free-particle 
density matrix, p~o), so we could replace each factor 
Po in (3.7) by p~o); however, a better approximation 
is to use the following replacement in the integrand: 

·A po(i6.r,M6.r,{J) (0). 
po(li.J.r, r, (J) R:i (0). Po (/6.r, r, (J), (3.8) 

Po (/6.r, M6.r, (J) 

since the major contribution to the integral comes from 
r R:i R = (M + t6.r) and we calculate po{i6.r, M6.r, (J) 
at each stage of the iteration. Using Eq. (3.8) we can 
now obtain an approximate expression for the integral 
from R to CX) in terms of error functions. 

The basic iteration equation (3.6) is thus approxi­
mated by 

(2{J) 6. ~ ({J) ((J) PiM({J) P M ;({J) 
Pi; = r ~ Pik Pk; + (O)({J) (0) ({J) Ai;, 

k=l PiM PM; 

11 T. W. Sag and G. Szekeres. Math. Computation 18, 245 (1964). 
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where 

Atj =JRoodrp~O)(iAr, r, fJ)p~O)(r,jAr, fJ) 

= t(87TfJr*{exp ( - (i - i~2Ar) 

x [erfc (2R - (i t j)Ar) 
(8fJ) 

+ erfc (2R + (i + j)Ar)~ 
(8fJ)* ~ 

( 
(i + NAr2) - exp - -,--..:......:c-<--_ 

8fJ 

x [erfc (2R - (i t j)Ar) 
(8fJ) 

+ erfc (2R + (i - j)Ar)~} (3.9) 
(8fJ)* ~ 

with R = (M + t)Ar. The function erfc (x) is defined 
by erfc (x) = (2/7T)* f: dt exp (_t 2). A value of fJ 
is chosen to start the iteration procedure so that 
Po(fJ) differs from p~O)(fJ) by a factor close to unity 
for all points on the grid. For this value of fJ we then 
set 

p.lfJ) = (47T fJ)-* exp (fJ/Mi + fJ/Arj) 

X {exp (-(i - j)2Ar2/4fJ) - exp(-(i + j)2Ar2/4fJ)}. 

(3.10) 

Equation (3.9) will then enable us to find a numerical 
approximation for po(rl , r2, 2fJ), i.e., at half the 
temperature, at all points on the square grid in 
(rl' r2) space. 

From this approximation for po(rl , r2, fJ), Eqs. 
(2.9) and (2.10) can then be used to find the complete 
Coulomb density matrix on a square grid in the 
(x = (rl + r2 + Ir2 - r l l)/2, Y = (rl + r2 -lr2 - r l l)/2) 
space. The differentiation in Eq. (2.10) to find the 
diagonal elements of p(rl' r2, fJ) can be carried out 
numerically using the following rule: 

1 02 

per, r, fJ) = - - -2 po(r + s, r - s, fJ)I.=o 
87T OS 

87T(~r)2 Lap.,i + b(Pi,i+l + PH,i) 

+ epHI,i-1 + d(Pi-l,i-1 + PHI,i+I)] 

+ O(Ar2
), (3.11) 

where a + 2b + 2e + d = 0, b + 2e = 2, b + 4d = 
0, and r = i!l.r. In addition, when Po = p~O), the 
choice of b + 8e = ° gives an error term of only 
O(!l.r4) instead of o (!l.r2). With this restriction, the 
constants are a = -J.l·, b = l.l, e = -i-, d = -t. 

These constants were found to give the least error for 
the free-particle density matrix and so were used to 
find the diagonal elements of the complete Coulomb 
density matrix from Pii . 

4. RESULTS 

These calculations were performed on the CDC 
6400 computer at the University of Adelaide, South 
Australia. The computing time depends almost 
entirely on the value of M; with M = 80, each 
iteration takes approximately 8 sec. Figure 1 shows the 
two-particle approximation to the quantum radial­
distribution functiong2(r ) for a proton-electron plasma 
for a range of temperatures from 104 to 16 X 104 OK. 
For small radial distances these results were calculated 
using Ar = 0.1 and M = 80 with the classical approxi­
mation, Eq. (3.4), with a value of fJ corresponding to 
T = 2.048 X 107 OK, used as the starting point for the 
iteration procedure. Note that by comparison with 
Eq. (3.2), this calculation of g2(r) at a temperature 
of 104 OK is equivalent to evaluating a 2048-dimen­
sional integral. An integral of this type would be hard 

4 
(rlaol 

10 12 14 

FIG. 1. The quantum radial-distribution function g.(r) for T = 
10' to 16 X 10' OK. The corresponding classical radial-distribution 
function for T = 2 X 10' OK is included for comparison. 
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__ Ar = O·lao 

____ A r = 0.15a. 

10·~--------~---------T~------~ 
rIa 0 

FIG. 2. An enlarged portion of Fig. I, showing the calculated 
values of g,(r) using various values for the grid size 6.r, for T = 
2 X 10' oK. 

to evaluate by other means, e.g., Monte Carlo methods 
of integration, which tend to become very inefficient 
when the number of dimensions gets very large. 

The effect of varying !:::.r is shown in Fig. 2. For 
!:::.r < O.lao there is little effect on the values near the 
origin, however, the range R of the calculation be­
comes rather small unless one uses prohibitively large 
values of M. The approximation in Eq. (3.8) causes a 
small error only for r ~ R and this error can be de­
tected readily by increasing the value of M. For the 
results shown in Fig. 1, this "edge effect" affects the 
values of p by more than 1 % only for r > R - to!:::.r 

-0· 2 

Veff 

-0.6 

-0.8 

-1.0 

-1.2 

rlao 
8 10 

-' 
12 

-.-

COULOMB POTENTIAL 

14 

FIG.3(a). The quantum effective potential Ve!!(r) = -logg.(r)/{Jrx. 
compared with the attractive Coulomb potential Vc(r) = -llr 
for T = 10' oK and 2 X 10' oK. 

and one can arrange M or !:::.r so that this region is 
past the point where quantum effects on the radial­
distribution function have any significant effect. 

The two-particle classical approximation to the 
radial-distribution function is 

exp (-{JV(r» = ~xp ({JIX/r), 

so to facilitate comparison between the classical and 
quantal results, we define an effective (temperature­
dependent) potential by 

g2(r) = exp [-(JIXVelf(r)]. (4.1') 

Figures 3(a) and 3(b) show the effective potential for 
T = 104 oK to T = 8 x 104 oK. It is interesting to 
note that at these temperatures, the effective potential 
is almost a straight line for small radial distances and 
joins the classical potential over quite a small range of 
r. Most modified potentials used previously were 
approximately equal to the classical potential for 
r > ao and had none of the marked temperature 
dependence shown here. 

In the limit {J -+ 00, the first term ofEq. (1.4), viz., 
exp (-{JEO)"P:(rl)"PO(r2), dominates p(rl , fa, (J), SO one 
could use the values of perl> fa, (J) for large (J to find 
the ground-state eigenvalue and eigenfunction for the 
Coulomb potential. 

In addition, information about the higher eigen­
values could be obtained from the temperature 

_0·8 

Veff 

_1.0 

rIa 0 

5 

_._._ T = 4.10 4o K 

____ T = a.1Q40K 

___ COULOMB POTENTIAL 

FuJ. 3(b). The quantum effective potential Ve!f(r) = -logg.(r) 
(JIX. compared with the attractive Coulomb potential Vc(r) = -l/r 
for T= 4 X 10' and 8 X 10,oK. 
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6 
10 

3 
10 

--_ CONTRIBUTION FROM GROUND 
STATE. 

~ 
\ 

\ 
\ , 

" ' ...... ....... ----- --
1~4---~~--~~--~~-+----~---4----~ 

10 12 14 

FIG. 4. A comparison between g2(r) and the contribution to g2(r) 
from the ground state of the two-particle system. 

__ Calculated result for 9i') 

-.-.- I • In pel'" 

10 ................. -'-
........ -

-- ...... 

Temper.lure ('K) 

FIG. 5. A comparison between g2(O) and the approximations 
exp [(1T)lpe2/l] and 1 + (1T)tpeW:. 

dependence of p(rl' r2, fJ). Figure 4 shows a compari­
son between the calculated values of 

g2(r) = (21T1i2fJ/p)ip(r, r, fJ) 

and the contribution to g2(r) from the ground state. 
It is the fact that one can obtain such a close 
correspondence between the exact and calculated 
values for the ground-state eigenvalue from the low­
temperature results that gives one great confidence in 
the accuracy of the results at high temperatures. A 
calculation of the diagonal eIements of the density 
matrix2 using Eq. 0.4) and the,.exact Coulomb wave­
functions gives results wftMn O. I % of those obtained 
here. As is shown by these results, an iteration 
procedure coupled with integration, using numerical 
quadratures, constitutes a useful method for evaluat­
ing path integrals and hence finding the complete 
quantum-statis!tal density matrices for a range of 
temperatures. . 

There have been several analytical studies of the 
radial-distribution function at small separations . 
Trubnikov and Elesin,12 Feix,13 and Diesendorf and 
Ninhaml4 have obtained the first two terms of the 
high-temperature expansion of g2(O), 

g2(O) ~ 1 + (1T)!fJe2/lL, (4.1) 

where lL is the thermal de Broglie wavelength lL = 
n(fJ/2p)!. The temperatures at which this expression 
is valid are far above those considered here; however 
the results obtained indicate that a conjecture made 
by DeWitt,IS viz., 

g2(O) ~ exp [(1T)!fJe2/lL], (4.2) 

is very close to the true result for high temperatures. 
Figure 5 shows a comparison between the approxi­
mations ofEqs. (4.1) and (4.2) and the calculated value 
of g2(O). It seems that regarding the electrons as being 
"smeared out" over a distance of the order of lL is 
quite a reasonable way of picturing their behavior in 
this case. 
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